金属强化机制PPT课件.ppt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金属 强化 机制 PPT 课件
- 资源描述:
-
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2019/10/20,#,金属强化机制,2019/10/20,金属强化机制,固溶强化,第二相粒子强化,细晶强化,加工硬化,2,.,2019/10/20,固溶强化,固溶体:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。,与组成固溶体的纯组元相比,固溶体的晶格类型不发生变化,但点阵常数都会发生变化;其硬度、强度升高,而塑性、韧性相对下降,但综合力学性能优于纯金属。,3,.,2019/10/20,根据溶质原子在溶剂点阵中所处的位置分为:,置换固溶体:溶质原子占据溶剂点阵的阵点,间隙固溶体:溶质原子分布于溶剂晶格间隙,4,.,2019/10/20,固溶强化,溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。如图表示,Cu-Ni,固溶体的强度和塑性随溶质含量的增加,合金强度、硬度提高,而塑性有所下降,即产生了固溶强化效果。,5,.,2019/10/20,固溶强化的主要机制,:,柯氏气团:,在固溶体合金中,溶质原子或杂质原子可以与位错交互作用而形成溶质原子气团。,6,.,2019/10/20,低碳钢退火状态的工程应力应变曲线及屈服现象,低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台,这就是屈服平台。,7,.,2019/10/20,低碳钢屈服现象的柯氏气团理论,所谓的柯氏气团,就是指碳原子偏聚于刃位错的下方,碳原子有钉扎位错,使位错不易运动。位错要运动,只要从气团中挣脱出来,摆脱碳原子的钉扎。位错要从气团中挣脱出来,需要较大的力,这就形成了上屈服点。而一旦挣脱之后,位错的运动就比较容易,因此有了应力降落,出现下屈服点和水平台。,8,.,2025/6/16 周一,低碳钢的应变时效,a-,预塑性变形,b-,卸载后立即加载,c-,卸载后放置一段时间或在,200,摄氏度加热后在加载,9,.,2025/6/16 周一,当卸载后立即重新加载,由于位错已经挣脱柯氏气团的钉扎,所以没有出现屈服点,如果卸载后放置很长时间或经时效则溶质原子已经通过扩散而重新聚集到位错周围形成柯氏气团,屈服现象又重复出现。,10,.,2025/6/16 周一,第二相粒子强化,根据第二相粒子的尺寸大小分为:,聚合型合金:,两相晶粒尺寸属于同一数量级,较强相数量较少时,塑性变形基本上都发生在较弱相中,只有较强相的体积分数大于,30%,时,才能起到明显的强化作用。,弥散分布型合金,:,弥散地分布于基体中的第二相粒子会阻碍位错运动而起到强化作用。通过第二相粒子是否可变形可分为两类强化机制:,沉淀强化(时效强化),弥散强化,11,.,2019/10/20,沉淀强化,沉淀强化是可变形粒子强化:位错且过第二项粒子所引起的强化作用。第二相粒子与基体共格,能被位错切过,位错切过粒子时,粒子产生宽度为b的表面台阶,增加表面能,通过共格应变场等因素使合金强化。,12,.,2019/10/20,弥散强化,弥散强化型合金中不可变形的第二相粒子的强化作用是通过粒子对位错的阻碍作用实现的,如图为奥罗万(,E.Orowan,)机制。,根据位错理论,迫使位错线弯曲到该状态所需的切应力:,G,为切变弹性模量,,b,为柏氏矢量,,为两粒子间距离。,由此可见,不可变形粒子的强化作用与粒子间距,成反比,粒子越多,粒子间距越小,强化作用明显,因此,减小粒子尺寸(在同样的体积分数时,粒子越小,则粒子间距也越小)或提高粒子的体积分数都会导致合金强度的提高。,13,.,2019/10/20,细晶强化,多晶体中晶体各项异性,不同位向晶粒的滑移系取向不同,滑移方向也不同,滑移方向不可能从一个晶粒直接延续到另一个晶粒中;晶界处原子排列不规则,点阵畸变严重。,因此,,在室温下,晶界将会阻碍,位错的滑移,使每个晶粒中的滑移,带终止在晶界附近,并发生位错堵,塞现象,如图所示,位错塞积群又,会对位错源产生一反作用力,这个,力增大到某一数值时,使位错源停止开动。则要使第二晶粒产生滑移,必须增大外加应力,以启动第二晶粒中的位错源动作。即对于多晶体而言,外加应力必须大至足以激发大量晶粒中的位错源动作产生滑移,才能觉察到宏观的塑性变形。,14,.,2019/10/20,晶界对多晶体塑性变形的影响主要取决于晶界数量,晶粒大小又决定了晶界数量。图为低碳钢的晶粒大小与屈服点的关系曲线,由图可见,钢的屈服点与晶粒直径平方根的倒数呈线性关系。晶粒越小,晶粒数量越多,屈服点越大。,15,.,2019/10/20,霍尔,-,佩奇(,Hall-Petch,)公式描述了晶粒平均尺寸,d,与屈服强度,s,的关系:,s=0+kd,-1/2,0,晶内对变形的阻力,相当于极大单晶的屈服强度;,k,晶界对变形的影响系数。,16,.,2025/6/16 周一,细晶强化是唯一不以降低材料的塑性来增加强度的强化方法,晶粒强化的原因:晶粒细化后,晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过,即阻碍塑性变形,也就实现了高强度。,塑性,韧性好的原因:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,既表现出较高的塑性。细晶粒金属中,裂纹不易萌生(应力集中少),也不宜传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。,17,.,2025/6/16 周一,加工硬化,金属材料经冷加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。,加工硬化的实质是金属经过冷加工产生大量的位错,位错发生积塞和缠结等交互作用,部分成为不可动位错,起到了“钉扎”作用,对塑性变形起到阻碍作用,从而达到强化基体的目的,。,18,.,2019/10/20,什么是金属纳米材料?,金属纳米材料是指三维空间中至少有一维处于纳米尺度或由它们作为基本单元构成的金属材料。,金属纳米材料具有许多其本体普通材料所没有的独特的物理和化学性能,在光、电、磁、催化剂、传感、生物医药等方面具有广泛的应用前景。,这些独特性能与,纳米材料的尺寸、,形状密切相关,因而形貌可控地,制备纳米材料非常重要。,19,.,2025/6/16 周一,金属纳米材料的制备工艺,零维金属纳米材料的制备方法,气相法 液相法 水热法 溶胶-凝胶法 高能球磨法,一维金属纳米材料的制备方法,晶体的气-固生长法 选择电沉积法,二维金属纳米材料的制备方法,溶胶-凝胶法 高速超微粒子沉积法 溅射法 惰性气体蒸发法,三维金属纳米材料的制备方法,惰性气体蒸发、原位加压制备法 非晶晶化法 高能球磨法结合加压成块法,20,.,2025/6/16 周一,金属纳米材料的力学性能,关于纳米材料的力学性能的研究总结出四条与常规晶粒材料不同的结论,21,.,2025/6/16 周一,金属纳米材料自诞生以来对各个领域的影响令人瞩目,这主要是因为纳米材料往往“身怀绝技”,有特殊的用途。现列出一些金属纳米材料在实际中的主要用途:,(1)钴(Co)高密度磁记录材料。利用纳米钴粉记录密度高、矫顽力高(可达119.4kAm)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。,(2)金属纳米粉体对电磁波有特殊的吸收作用。可作为吸波材料,具有频带宽、兼容性好、质量小、厚度薄等优点。美国新近开发的含“超黑粉”的纳米复合材料,吸波率达99。法国研究者采用真空沉积法把NiCo合金及SiC沉积在基体上形成超薄电磁吸收纳米结构,再粉碎成微屑并制成纳米材料,吸波频率达50MHz50GHz。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光一红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。,22,.,2025/6/16 周一,(3)表面涂层材料。纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。,(4)高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。通常的金属催化剂铁、铜、镍、钯、铂等制成纳米微粒可大大改善催化效果。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。粒径为30nm的镍可将有机化学加氢及脱氢的反应速度提高15倍。,23,.,2025/6/16 周一,5)导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。,(6)高性能磁记录材料一铁。利用纳米铁粉的矫顽力高、饱和磁化强度大、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。,(7)磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。用永久磁铁将磁流体固定在回转轴的周围,因回转轴与周围固定件间的空隙很小,其磁场强度特别大,从而能承受较大的沿轴线方向的推力,达到密封效果。,24,.,2025/6/16 周一,(8)导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。,(9)高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。,(10)高硬度、耐磨WC-Co纳米复合材料。纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。,25,.,2025/6/16 周一,(11)Al基纳米复合材料。Al基纳米复合材料具有超高强度(可达到16GPa)。其结构特点是在非晶基体上弥散分布着纳米尺度的aAl粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常用快速凝固技术获得纳米复合结构。这种材料具有很好的强度与模量的结合以及疲劳强度。温挤A1基纳米复合材料已经商业化,在高温下表现出很好的超塑性行为:在1s 1的高应变速率下,延伸率大于500。,26,.,2025/6/16 周一,27,.,2025/6/16 周一,展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




金属强化机制PPT课件.ppt



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/10801445.html