分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型辽宁省北镇市中考数学 几何复习 第七章 圆 第7课时 圆心角弧长弦心距弦的关系(一)教案-人教版初中九年级全册数学教案.doc

  • 上传人:s4****5z
  • 文档编号:7635604
  • 上传时间:2025-01-10
  • 格式:DOC
  • 页数:4
  • 大小:94KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    辽宁省北镇市中考数学 几何复习 第七章 第7课时 圆心角弧长弦心距弦的关系一教案-人教版初中九年级全册数学教案 辽宁省 北镇市 中考 数学 几何 复习 第七 课时 圆心角 弧长弦心距弦 关系 教案
    资源描述:
    第七章:圆 第7课时:圆心角、弧、弦、弦心距之间的关系(一) 教学目标: 1、本节课使学生理解圆的旋转不变性; 2、掌握圆心角、弧、弦、弦心距之间关系定理,并能应用这些关系定理证明一些问题. 3、通过本节课的教学进一步培养学生观察、比较、归纳、概括问题的能力. 教学重点: 圆心角、弧、弦、弦心距之间关系定理. 教学难点: “圆心角、弧、弦、弦心距之间的关系定理”中的“在同圆或等圆”的前提条件的理解. 教学过程: 一、新课引入: 同学们请观察老师手中的圆形图片.AB为⊙O的直径.①我把⊙O沿着AB折叠,两旁部分互相重合,我们知道这个圆是一个轴对移图形.②若把⊙O沿着圆心O旋转180°时;两旁部分互相重合,这时我们可以发现圆又是一个中心对称图形.由学生总结圆不仅是轴对称图形,圆也是中心对称图形. 若一个圆沿着它的圆心旋转任意一个角度,都能够与原来图形互相重合,这就是我们本节课要讲的内容:圆的一条特殊性质,即圆的旋转不变性.从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的关系,这是本节课我们所要学习的圆的又一条性质. 二、新课讲解: 首先出示圆形图片,引导学生观察: 下面我们来学习圆心角、弧、弦、弦心距之间的关系. 提问两名中下生回答弧、弦的概念. 接着教师一边画图,一边引导学生观察,由学生总结出: 圆心角定义:顶点在圆心的角叫圆心角. 弦心距定义:从圆心到弦的距离叫做弦心距.教师通过图片(图7-21)演示,从学生观察中得到圆的旋转不变性,到圆心角、弦心距的两个概念,其目的是要求学生学会从观察、比较到归纳分析知识的能力,这样可以充分调动学生学习几何的积极性. 教师为了使学生真正了解图中圆心角、弧、弦、弦心距之间的内在联系,有意识找两位差一些的学生回答:“指出圆心角∠AOB所对的弧是______,所对的弦是______,所对弦的弦心距是______. 接下来我们来讨论:在⊙O中,如果圆心角∠AOB=∠A′OB′,那么它们所对的 和 ,弦AB和A′B′、弦心距OM和OM′是否也相等呢? 教师利用电脑演示,一边讲解,我们把∠AOB连同AB沿着圆心O旋转,使射线OA与OA′重合.由圆的旋转不变性,射线OB与OB′重合.因为∠AOB=∠A′OB’,OA=OA′,OB=OB′,∴点A与点A′重合,AB与A′B′重合,从点O到AB的垂线OM和点O到A′B′的垂线OM′也重合. 即, = ,AB=A′B′,OM=OM′. 于是由一名学生总结定理内容,教师板书: 定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等. 教师进一步提出这样一个问题:这个命题不加“在同圆或等圆”这个前题条件是否是一个真命题呢? 学生分小组讨论,由小组代表发表自己的意见.教师概括如下: 这个定理的题设是:“在同圆或等圆中”、圆心角相等;结论是:“所对的弧相等”、“所对弦相等”、“所对弦的弦心距相等”. 值得注意的是:在运用这个定理时,一定不能丢掉“在同圆或等圆中”这个前提.否则也不一定有所对的弧、弦、弦心距相等这样的结论. 教师为了培养学生的思维批判性,请一名同学画一个只能是圆心角相等的这个条件的图,虽然∠AOB=∠A′OB′,但由于OA≠OA′,OB≠OB′.通过举出反例强论对定理的理解. 这时教师分别把两个圆心角用①表示;两条弧用②表示;两条弦用③表示;两条弦的弦心距用④表示,我们就可以得出这样的结论. 事实上,由于在“同圆或等圆中”这个前提下,将题设和结论中任何一项交换都是正确的.于是得到了这个定理的推论, 为了巩固所学习的定理,黑板上出示例1: 例1  如图7-23,点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D.求证:AB=CD. 这道题的证明思路,教师引导学生分析:要证明两弦AB=CD,根据本节课所学的定理及推论,只要能证出圆心角、弧、弦心距三个量之中的一个相等即可.由于已知PO是∠EPF的平分线,利用角平分线的性质可知点O到AB、CD的距离相等,即弦心距相等,于是可证明AB=CD. 学生回答证明过程,教师板书: 证明:作OM⊥AB,ON⊥CD,M,N为垂足. 接着教师请同学们观察幻灯片,教师一边演示,一边讲解:如果将例1的∠EPF的顶点P看成是沿着PO这条直线运动,(1)当顶点在⊙O上时;(2)当顶点P在⊙O内部时,是否能得到例1的结论?请同学们课后思考完成. 课堂练习:教材P.88中1、2、3. 三、课堂小结: 本节课主要学习的内容是 (1)圆的旋转不变性; (2)同圆或等圆中,圆心角、弧、弦、弦心距之间相等关系. 本节课学习方法是(1)增加了证明角相等、弧相等的新方法; (2)利用本节课的定理可以证明弦、弦心距相等的方法. 四、布置作业 教材P.99中1(1)、2、3.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:辽宁省北镇市中考数学 几何复习 第七章 圆 第7课时 圆心角弧长弦心距弦的关系(一)教案-人教版初中九年级全册数学教案.doc
    链接地址:https://www.zixin.com.cn/doc/7635604.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork