分享
分销 收藏 举报 申诉 / 3
播放页_导航下方通栏广告

类型分解因式之十字相乘法.doc

  • 上传人:xrp****65
  • 文档编号:7029337
  • 上传时间:2024-12-25
  • 格式:DOC
  • 页数:3
  • 大小:229KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    分解 因式 十字 相乘
    资源描述:
    分解因式之十字相乘法(顺口溜:竖分常数交叉验,横写因式不能乱。) 我们知道,反过来,就得到二次三项式的因式分解形式,即,其中常数项6分解成2,3两个因数的积,而且这两个因数的和等于一次项的系数5,即6=2×3,且2+3=5。 一般地,由多项式乘法,,反过来,就得到 这就是说,对于二次三项式,如果能够把常数项分解成两个因数a、b的积,并且a+b等于一次项的系数p,那么它就可以分解因式,即 。运用这个公式,可以把某些二次项系数为1的二次三项式分解因式。 例1 把分解因式。 分析:这里,常数项2是正数,所以分解成的两个因数必是同号,而2=1×2=(-1)(-2),要使它们的代数和等于3,只需取1,2即可。 解:因为2=1×2,并且1+2=3,所以 例2 把分解因式。 分析:这里,常数项是正数,所以分解成的两个因数必是同号,而6=1×6=(-1)×(-6)=2×3=(-2)×(-3),要使它们的代数和等于-7,只需取-1,-6即可。 解:因为6=(-1)×(-6),并且(-1)+(-6)=-7,所以 例3 把分解因式。 分析:这里,常数项是负数,所以分解成的两个因数必是异号,-21可以分解成-21=(-1)×21=1×(-21)=(-3)×7=3×(-7),其中只需取3与-7,其和3+(-7)等于一次项的系数-4。 例4 把分解因式。 解:因为-15=(-3)×5,并且(-3)+5=2,所以 通过例1︿4可以看出,把分解因式时: 如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同。 如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同。 对于分解的两个因数,还要看它们的和是不是等于一次项的系数p。 例5 把下列各式分解因式: (1) (2) 例6 把分解因式。 分析:把看成x的二次三项式,这时,常数项是,一次项系数是-3y,把分解成-y与-2y的积,(-y)+(-2y)=-3y,正好等于一次项的系数。 我们知道,。反过来就得到的因式分解的形式,即。 我们发现,二次项的系数3分解成1,3两个因数的积;常数项10分解成2,5两个因数的积;当我们把1,3,2,5写成 1 2 3 5 后发现1×5+2×3正好等于一次项的系数11。 由上面例子启发我们,应该如何把二次三项式进行因式分解。 我们知道, 反过来,就得到 我们发现,二次项的系数分解成,常数项分解成,并且把,,,排列如下: 这里按斜线交叉相乘,再相加,就得到+,如果它们正好等于的一次项系数,那么就可以分解成 ,其中,位于上图的上一行,,位于下一行。 像这种借助画十字交叉分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解。例如在上面例子的二次三项式中,二次项的系数3可以分解成1与3,或者-1与-3的积,常数项10可以分解成1与10,或者-1与-10,或者2与5,或者-2与-5的积,其中只要选取十字 1 2 1 -3 2 -1 3 5 相乘就可以了。 例7 把下列各式分解因式: (1) (2) (3) 2 1 3 -5 2 2y 5 -4y 1 1 1 2 1 -1 1 -6 1 3 1 -7 1 -3 1 5 另外,我们也可以用十字相乘法把二次三项式分解因式。例1︿4的十字分别是: 可以看出,这四个十字左边两个数都是1。因此在把分解因式时,不画十字也可以。 练习 把下列各式分解因式: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 用配方法分解二次三项式 对于某些二次三项式,除了可以用十字相乘法分解因式以外,还可以用“配方法”来分解,其中要用到完全平方公式、平方差公式以及添项、拆项的技巧(这里运用完全平方公式“配”出一个完全平方,是配方法的关健;“添项、拆项”是指先添一个0,再把0拆成绝对值相同、符号相反两项,也就是先加上一个适当的项,再减去这个项,其目的也是为了配方)。例如,把分解因式,我们可以这样进行: (加上,再减去) (运用完全平方公式) (运用平方差公式) (化简) 可以看出,这与十字相乘法分解的结果是一致的。 又例如,把分解因式,我们可以这样进行: (先提取二次项系数) (加上,再减去) (运用完全平方公式) (运用平方差公式) (化简) 可以看出,这与十字相乘法分解的结果是一致。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:分解因式之十字相乘法.doc
    链接地址:https://www.zixin.com.cn/doc/7029337.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork