【学案】由不共线三点的坐标确定二次函数.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学案 共线 坐标 确定 二次 函数
- 资源描述:
-
由不共线三点的坐标确定二次函数 【学习目标】 1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。 2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。 3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。 【重点】待定系数法求二次函数的解析式 【难点】在实际问题中会求二次函数解析式 【学习过程】 (一)知识链接 1、一般地,形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。 2、二次函数y=ax2+bx+c用配方法可化成:y=a(x-h)2+k,顶点是(h,k)。配方: y=ax2+bx+c=a(x+__)2+____。对称轴是x=__,顶点坐标是( ), h=____,k=____, 所以,我们把_____________叫做二次函数的顶点式。 基础练习 1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________. 2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________. 3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________. 4.抛物线的形状、开口方向都与抛物线y=-x2相同,顶点在(1,-2),则抛物线的解析式为________________________________. (二)自主学习 仔细阅读课本例题的分析解答过程,试着解答下面题目: 【题型一】已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式. 解: 小结:此题是典型的根据三点坐标用“待定系数法”求二次函数解析式,你能根据自己的自学总结出其基本步骤吗?1、____,2、____,3、____,4、____。 【题型二】例2 已知抛物线顶点坐标为(1,-4),且又过点(2,-3).求抛物线的解析式. 思考:此题需要用待定系数法,但是沿用上例的方法能解出来吗?结合条件特点和已学知识,需要在哪一步上有所变动呢?独立思考,不行的话小组合作探究。 解: 〈归纳〉用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设为__式____________________. 2.已知抛物线顶点坐标及一点,设为__式__________________ . 【题型三】要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长? 分析:由题意可知:池中心是 ,水管是 ,点 是喷头,线段 的长度是1米,线段 的长度是3米。由已知条件可设抛物线的解析式为 。抛物线的解析式中有一个待定系数,所以只需再确定 个点的坐标即可,这个点是 。求水管的长就是通过求点 的 坐标。 解: (三)对应训练 1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式. 2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式. 3、如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. AO= 3米,现以O点为原点,OM所在直线为x轴建立直角坐标系. (1) 直接写出点A及抛物线顶点P的坐标; (2) 求出这条抛物线的函数解析式; 二次函数及其图像 复习导学案 一、【课前热身】 1.将抛物线向上平移一个单位后,得到的抛物线解析式是 . 2. 如图1所示的抛物线是二次函数 的图象,那么的值是 . 3.二次函数的最小值是( ) A.-2 B.2 C.-1 D.1 4.二次函数的图象的顶点坐标是( ) A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3) 二、【考点链接】 1. 二次函数的图像和性质 >0 y x O <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x= 时,y有最 值 当x= 时,y有最 值 增减性 在对称轴左侧 y随x的增大而 y 随x的增大而 在对称轴右侧 y随x的增大而 y随x的增大而 2. 二次函数用配方法可化成的形式,其中 = , = . 3. 二次函数的图像和图像的关系. 4. 常用二次函数的解析式:(1)一般式: ;(2)顶点式: 。 5.二次函数通过配方可得,其抛物线关于直线 对称,顶点坐标为( , ). ⑴ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 ; ⑵ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 . 三、达标自测: 1.函数,当m_____时,该函数是二次函数;当m_____时,该函数是一次函数。 2.抛物线y=2x2+1的顶点坐标是______,对称轴是 ,当x= 时,函数取得最 ___值为 ;二次函数y=2x2-8x+1的顶点坐标是______,对称轴是___________,它的图象是由函数y=2x2+1沿着____轴向____平移______个单位,然后再沿着____轴向____平移______个单位得到。 3.判断下列函数表达式中哪能些是二次函数(是二次函数打“√”若不是则打“×”)。 (1)y=3x-2 ( ) (2)y=2x2-3x3 ( ) (3)y=1-2x2 ( ) (4) y= ( ) (5)y= ( ) (6) ( ) 4.二次函数y=ax2,当a<0时,y的值恒小于0,则自变量x的取值范围( )。 A. x可取一切实数 B. x>0 C. x<0 D. x≠0 5.抛物线y=2x2+x-3与x轴两个交点间的距离为( )。 A. 2.5 B. -0.5 C. 0.5 D. -2.5 6.有一个二次函数,它的图象经过(1,0);图象的对称轴是x=2;并且它的顶点与x轴的距离是4,则该函数的表达式是( ) A. B. C. D. 7、已知二次函数, (1) 用配方法把该函数化为 (其中a、h、k都是常数且a≠0)形式,指出函数的对称轴和顶点坐标. (2) 求函数的图象与x轴的交点坐标.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




【学案】由不共线三点的坐标确定二次函数.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4682621.html