分享
分销 收藏 举报 申诉 / 14
播放页_导航下方通栏广告

类型【江苏省】2017学年高考押题数学年试题(二).pdf

  • 上传人:二***
  • 文档编号:4358344
  • 上传时间:2024-09-13
  • 格式:PDF
  • 页数:14
  • 大小:672KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省 2017 学年 高考 押题 试题
    资源描述:
    1/14 江苏江苏省省 2017 年年高考押题高考押题数学试卷数学试卷(二二)答答 案案 一、填空题(本大题共 14 小题,每小题 5 分,共 70 分请把答案填写在题中横线上)13|1xx 216 365 44 5205 613 722sin()76yx 819 951,2 109 111,24 1263 1332 14(1,1)(2,4)二、解答题(本大题共 6 小题,共 90 分解答时应写出文字说明、证明过程或演算步骤)15(本题满分为 14 分)解:(1)为锐角,2(,)663 又3cos()65,故4sin()65,4 分 4cos()cos()sin()36652,6 分(2)又23sin()sin()cos()3665,8 分 故cos(2)cos()()366 2/14 cos()cos()sin()sin()6363 3443()5555 2425 14 分 16证明:(1)如图,连接 AC1,设与 CA1交于 O 点,连接 OD 直三棱柱111ABC ABC中,O 为 AC1的中点,D 是 AB 的中点,ABC1中,1ODBC 又OD平面1ACD,1BC平面1ACD(2)法一:由题意,设ABx,则24BPx,12ADx,12A Ax,由于122BPABADAA,1ABPADA,可得1BAPAAD,1190DA AADA,可得:1APAD,又CDAB,1CDBB,可得 CD平面 ABA1B1,CDAP,AP平面 A1CD 法二:由题意,取 A1B1的中点 O,连接 OC1,OD,分别以 OC1,OA1,OD 为 x,y,z 轴建立空间直角坐标系,设1OAa,1OCb,则:由题意可得各点坐标为:1(0,0)Aa,(,0,2 2)C ba,(0,0,2 2)Da,3 2(0,)2aPa,(0,2 2)Aaa,可得:1(,2 2)ACbaa,1(0,2 2)ADaa,2(0,2,)2aAPa,所以:由10AP AC,可得:APA1C,由10AP AD,可得:APA1D,3/14 又:111ACADA,所以:AP平面 A1CD 17解:(1)在COP中,2222cos106cosCPCOOPOC OP,从而CDP得面积233(53cos)42CDPSCP,又因为COP得面积13sin22COPSOC OP,所以15 3(3sin3 3cos)22CDPCOPOBPSSSS扇形,00,01105cos12,当DP所在的直线与半圆相切时,设取的最大值为0,此时在COP中,1OP,3OC,30CPO,00106cos6sinCP,01105cos12,(2)存在,1(3cos3 3sin1)2S,令0S,得1sin()66,当00,0S,所以当0时,S 取得最大值,此时035cos()66,00001105coscos()cos()cossin()sin66666612 18解:(1)由题意得:2 3babec,24a,又222abc,联立以上可得:24a,23b,21c 4/14 椭圆 C 的方程为221143xy;(2)如图,由(1)可知,椭圆的类准线方程为2 3y,不妨取2 3y,设00(,2 3)(0)P xx,则02 3OPkx,过原点且与 OP 垂直的直线方程为02 3xyx,当03x 时,过 P 点的圆的切线方程为3x,过原点且与 OP 垂直的直线方程为12yx,联立312xyx,解得:3(3,)2A,代入椭圆方程成立;同理可得,当03x 时,点 A 在椭圆上;当03x 时,联立0222 33412xyxxy,解得01220036(,99xAxx),02220036(,)99xAxx,PA1所在直线方程为22000020(2 3 93)(31096)2 3xxx xxyx 此时原点 O 到该直线的距离2022220000|312 3|3(2 3 93)(96)xdxxxx,说明 A 点在椭圆 C 上;同理说明另一种情况的 A 也在椭圆 C 上 综上可得,点 A 在椭圆 C 上 5/14 19解:(1)若0k,则数列na满足*122(,)nnnaaankNR,数列na是等差数列,设公差为 d,12a,354aa 2 264d,解得43d 24(1)282323nn nnnSn(2)*122(,)nnnaaak nkNR,354aa,41a ,则4352aaak,24k ,解得2k 数列na满足1222nnnaaa,当2n时,1122nnnaaa,相减可得:11212()()()nnnnnnaaaaaa,令1nnnbaa,则112nnnbbb 数列 nb是等差数列,公差435443()()2bbaaaa 首项为121baa,232baa,343baa,由2132bbb,可得32232()2 1aaaa,解得323()3aa,2321baa 2(2)(2)23nbbnn 6/14 123nnaan 112211()()()nnnnnaaaaaaaa 2(1)3 2(2)3()232nn (1)(1 52)22nn 241nn 20解:(1)由4()e3xf x ,得3214e(2(4)24)e33xxxxaxa,即326(312)680 xxaxa 对任意(,2)x 恒成立,即32(63)6128x axxx对任意(,2)x 恒成立,因为2x,所以322681(2)3(2)3xxaxx,记21()(2)3g xx,因为 g(x)在(,2)上单调递增,且(2)0g,所以0a,即 a 的取值范围为0,);(2)由题意,可得32()e()xfxxxaxa,可知 f(x)只有一个极值点或有三个极值点 令32()g xxxaxa,若 f(x)有且仅有一个极值点,则函数 g(x)的图像必穿过 x 轴且只穿过一次,即 g(x)为单调递增函数或者 g(x)极值同号()当 g(x)为单调递增函数时,2()20g xxxa在R上恒成立,得1a ()当 g(x)极值同号时,设 x1,x2为极值点,则12()()0g xg x,由2()20g xxxa有解,得1a,且21120 xxa,22220 xxa,所以122xx,12x xa,所以3211111111111()22(2)333g xxxaxaxxaxaxa=1111112(2)(1)333xaaxaxaaxa,同理,222()(1)3g xaxa,所以121222()()(1)(01)33g x g xaxaaxa,化简得221 212(1)(1)()0ax xa axxa,7/14 所以22(1)2(1)0aaa aa,即0a,所以01a 所以,当0a 时,f(x)有且仅有一个极值点;若 f(x)有三个极值点,则函数 g(x)的图像必穿过 x 轴且穿过三次,同理可得0a 综上,当0a 时,f(x)有且仅有一个极值点,当0a 时,f(x)有三个极值点 8/14 江苏省江苏省 2017 年年高考押题高考押题数学试卷(数学试卷(二二)解解 析析 一、填空题(本大题共 14 小题,每小题 5 分,共 70 分请把答案填写在题中横线上)1【考点】1D:并集及其运算【分析】求解一元二次不等式化简集合 A,然后直接利用并集运算得答案【解答】解:由 x2x20,解得1x2 A=x|1x2,又集合 B=x|1x3,AB=x|1x3,故答案为:x|1x3,2【考点】A5:复数代数形式的乘除运算【分析】利用复数相等求得 a,b 的值,代入(a+bi)8,再由复数代数形式的乘法运算化简得答案【解答】解:由 a+i=1bi,得 a=1,b=1,从而(a+bi)8=(1i)8=(2i)4=16 故答案为:16 3【考点】BC:极差、方差与标准差【分析】求出数据的平均数,从而求出方差即可【解答】解:数据 160,162,159,160,159 的平均数是:160,则该组数据的方差 s2=(02+22+12+02+12)=,故答案为:4【考点】KC:双曲线的简单性质【分析】根据条件求出双曲线的标准方程即可得到结论【解答】解:双曲线 x2+my2=1 过点(,2),2+4m=1,即 4m=1,m=,则双曲线的标准范围为 x2=1,则 b=2,即双曲线的虚轴长 2b=4,故答案为:4 5【考点】E5:顺序结构【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件 i=2n+1,nN,i=i+2100 时,S=2i+3 的值 9/14 【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件 i=2n+1,nN,i=i+2100 时,S=2i+3 的值,i+2=101 时,满足条件,输出的 S 值为 S=2101+3=205 故答案为:205 6【考点】C5:互斥事件的概率加法公式【分析】利用列举法求出甲、乙两人各抽取 1 张的基本事件的个数和两人都中奖包含的基本事件的个数,由此能求出两人都中奖的概率【解答】解:设一、二等奖各用 A,B 表示,另 1 张无奖用 C 表示,甲、乙两人各抽取 1 张的基本事件有 AB,AC,BA,BC,CA,CB 共 6 个,其中两人都中奖的有 AB,BA 共 2 个,故所求的概率 P=故答案为:7【考点】HK:由 y=Asin(x+)的部分图象确定其解析式【分析】由图可知,A=2,由点(0,1)在函数的图象上,可得 sin=,利用五点作图法可解得,又点(,0)在函数的图象上,可得+=k,kZ,进而解得,从而得解该函数的解析式【解答】解:由图知 A=2,y=2sin(x+),点(0,1),在函数的图象上,2sin=1,解得:sin=,利用五点作图法可得:=,点(,0),在函数的图象上,可得:2sin(+)=0,可得:+=k,kZ,解得:=,kZ,0,当 k=0 时,=,y=2sin(x+)故答案为:y=2sin(x+)8【考点】LF:棱柱、棱锥、棱台的体积 10/14 【分析】连接 B1D1A1C1=F,证明以 E 是A1BC1的重心,那么点 E 到平面 A1B1C1D1的距离是 BB1的,利用体积公式,即可得出结论【解答】解:连接 B1D1A1C1=F,平面 A1BC1平面 BDD1B1=BF,因为 E平面 A1BC1,E平面 BDD1B1,所以 EBF,连接 BD,因为 F 是 A1C1的中点,所以 BF 是中线,又根据 B1F 平行且等于BD,所以=,所以 E 是A1BC1的重心,那么点 E 到平面 A1B1C1D1的距离是 BB1的,所以 V1=BB1,而 V2=BB1,所以=故答案为:9【考点】7C:简单线性规划【分析】作出不等式组对应的平面区域,利用直线斜率的几何意义进行求解即可【解答】解:作出不等式组对应的平面区域,的几何意义是区域内的点到定点 D(0,1)的斜率,由图象知,AD 的斜率最大,BD 的斜率最小,此时最小值为 1,由得,即 A(1,),此时 AD 的斜率 k=,即 1,故的取值范围是1,故答案为:1,11/14 10【考点】8E:数列的求和【分析】设an,bn的公比分别为 q,q,利用=,求出 q=9,q=3,可得=3,即可求得结论【解答】解:设an,bn的公比分别为 q,q,=,n=1 时,a1=b1 n=2 时,n=3 时,2q5q=3,7q2+7qq2q+6=0,解得:q=9,q=3,故答案为:9 11【考点】9R:平面向量数量积的运算【分析】以为坐标原点,以 BC 所在的直线为 x 轴,建立如图所述的直角坐标系,作 AEBC,垂足为 E,求出 A(,),D(,),设点 P(x,0),0 x2,根据向量的坐标运算以及向量的数量积的运算得到=(x)2,根据二次函数的性质即可求出答案【解答】解:以 B 为坐标原点,以 BC 所在的直线为 x 轴,建立如图所述的直角坐标系,作 AEBC,垂足为 E,BAD=120,AB=1,AD=2,12/14 ABC=60,AE=,BE=,A(,),D(,),点 P 是线段 BC 上的一个动点,设点 P(x,0),0 x2,=(x,),=(x,),=(x)(x)+=(x)2,当 x=时,有最小值,最小值为,当 x=0 时,有最大值,最大值为 2,则的取值范围为,2,故答案为:,2 12【考点】K4:椭圆的简单性质【分析】设椭圆的左焦点为 F1,连结 AF1,BF1,通过|AB|=|F1F|=2c,所以在 RtABF 中,|AF|=2csin,|BF|=2ccos,由椭圆定义,转化求解离心率即可【解答】解:设椭圆的左焦点为 F1,连结 AF1,BF1,由对称性及 AFBF 可知,四边形 AFBF1是矩形,所以|AB|=|F1F|=2c,所以在 RtABF 中,|AF|=2csin,|BF|=2ccos,由椭圆定义得:2c(cos+sin)=2a,即:e=13/14 故答案为:13【考点】HR:余弦定理;HP:正弦定理【分析】由+=可得,+=,通分化简,根据正弦定理及余弦定理在化简,利用基本不等式的性质求解【解答】解:由+=可得,+=,即=,=,即=,sin2C=sinAsinBcosC 根据正弦定理及余弦定理可得,c2=ab,整理得 a2+b2=3c2,=,当且仅当 a=b 时等号成立 故答案为 14【考点】54:根的存在性及根的个数判断【分析】根据新定义得出 f(x)的解析式,作出 f(x)的函数图象,则 f(x)与 y=m1 共有 4 个交点,根据图象列出不等式组解出【解答】解:解不等式 x44 得 x0,f(x)=,画出函数 f(x)的大致图象如图所示 因为关于 x 的方程|f(x)m|=1(mR),即 f(x)=m1(mR)恰有四个互不相等的实数根,所以两直线 y=m1(mR)与曲线 y=f(x)共有四个不同的交点,或或,解得 2m4 或1m1 故答案为(1,1)(2,4)二、解答题(本大题共 6 小题,共 90 分解答时应写出文字说明、证明过程或演算步骤)15【考点】GP:两角和与差的余弦函数 14/14 【分析】(1)由已知及同角三角函数基本关系式可求 sin(+),利用诱导公式即可得解 cos()的值(2)利用诱导公式可求 sin(),由 2=(+)(),利用两角差的余弦函数公式即可计算得解 16【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定【分析】(1)连接 AC1,设与 CA1 交于 O 点,连接 OD,由 O 为 AC1 的中点,D 是 AB 的中点,可得 ODBC1,即可证明 BC1平面 A1CD(2)法一:设 AB=x,则证明ABPADA1,可得 APA1D,又由线面垂直的性质可得 CDAP,从而可证 AP平面 A1CD;法二:由题意,取 A1B1 的中点 O,连接 OC1,OD,分别以 OC1,OA1,OD 为 x,y,z 轴建立空间直角坐标系,设 OA1=a,OC1=b,由题意可得各点坐标,可求=(b,a,2),=(0a,2),=(0,2a,),由=0,=0,即可证明 AP平面 A1CD 17【考点】HN:在实际问题中建立三角函数模型【分析】(1)根据余弦定理和和三角形的面积公式,即可表示函数关系式,(2)存在,存在,S=(3cos+3sin1),根据两角和差的余弦公式即可求出 18【考点】K4:椭圆的简单性质【分析】(1)由题意列关于 a,b,c 的方程,联立方程组求得 a2=4,b2=3,c2=1,则椭圆方程可求;(2)设 P(x0,2)(x00),当 x0=时和 x0=时,求出 A 的坐标,代入椭圆方程验证知,A 在椭圆上,当 x0时,求出过点 O 且垂直于 0P 的直线与椭圆的交点,写出该交点与 P 点的连线所在直线方程,由原点到直线的距离等于圆的半径说明直线是圆的切线,从而说明点 A 在椭圆 C 上 19【考点】8H:数列递推式;8E:数列的求和【分析】(1)若 k=0,则数列an满足 2an+1=an+an+2(nN*,kR),则数列an是等差数列,利用等差数列的前 n 项和公式即可得出(2)2an+1=an+an+2+k(nN*,kR),a3+a5=4,a4=1,可得 2a4=a3+a5+k,k=2 数列an满足 2an+1=an+an+2+2,利用递推关系可得:2(an+1an)=(anan1)+(an+2an+1),令 bn=an+1an,则 2bn=bn1+bn+1数列bn是等差数列,即可得出 20【考点】6D:利用导数研究函数的极值;3R:函数恒成立问题【分析】(1)原不等式转化为所以 a(x2)2,根据函数的单调性即可求出 a 的范围,(2)先求导,再构造函数,进行分类讨论,利用导数和函数的极值的关系即可判断
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:【江苏省】2017学年高考押题数学年试题(二).pdf
    链接地址:https://www.zixin.com.cn/doc/4358344.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork