欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    高锂粉煤灰磁选除铁实验.pdf

    • 资源ID:1470183       资源大小:1.88MB        全文页数:7页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    高锂粉煤灰磁选除铁实验.pdf

    1、高锂粉煤灰磁选除铁实验臧静坤,程伟,潘雪玲(贵州大学矿业学院,喀斯特地区优势矿产资源高效利用国家地方联合工程实验室,贵州省非金属矿产资源综合利用重点实验室,贵州贵阳550025)摘要:这是一篇矿物加工工程领域的论文。本研究以贵州某电厂粉煤灰为研究对象,综合运用多种测试手段对粉煤灰进行矿物组成及元素含量测定。结果表明,粉煤灰中主要矿物为莫来石、石英和铁矿物(5.46%的磁铁矿以及 4.77%的赤铁矿),主要化学成分为 SiO2、Al2O3和 Fe2O3,含量分别达到 36.88%、20.89%和 14.58%。此外,原灰中锂的含量高达 307 g/t,显示出一定的综合利用价值。粒度分析表明,粉煤

    2、灰75 m 以下累积产率高达 83.4%,整体颗粒较细,且锂和铁主要富集在-75 m 的粒级中。采用还原焙烧的方法将粉煤灰中弱磁性的赤铁矿转化为强磁性的磁铁矿,再采用湿式磁选方法对粉煤灰进行除铁研究。结果表明:以粉煤灰中的残碳为还原剂,焙烧温度为 700,焙烧时间为 45 min,磁场强度为 240 mT 的条件下,采用“一次粗选-两次扫选”的磁选工艺,粉煤灰中铁去除率达到 63.27%,同时锂的回收率达到 80.31%,实现了铁杂质的选择性脱除。关键词:矿物加工工程;粉煤灰;还原焙烧;磁选;除铁doi:10.3969/j.issn.1000-6532.2023.05.012中图分类号:TD9

    3、52;TD97 文献标志码:A 文章编号:1000-6532(2023)05006307 粉煤灰是指从燃煤过程产生烟气中收捕下来的细微固体颗粒物,是燃煤电厂排出的主要固体废弃物,也是我国产生量最大的工业固体废弃物之一1。粉煤灰的大量堆存不仅会造成土地资源的浪费,同时也会导致严重的环境污染2-3。据2020 年全国大、中城市固体废物污染环境防治年报统计,2019 年重点发表调查工业企业的粉煤灰产生量 5.4 亿 t,综合利用率为 74.7%4。上世纪五十年代,英美法日荷等发达国家已经相继开始对粉煤灰的理化特性及综合利用展开研究5。近年来,粉煤灰高值化利用得到重视。目前,粉煤灰已广泛应用于建筑、精

    4、细利用、农业、化工和环境保护等行业6-7。近年来,锂(Li)作为战略资源的地位日渐凸显,锂产品价格急剧上涨,全球年均锂电池需求增长率已飙升到 20%以上,世界各国均加大了对锂资源的勘查开发力度。粉煤灰中还含有一定丰度的锂、镓、锗、钪等贵金属和铼、钇等稀贵金属元素8-9。我国山西、内蒙也已发现特大型煤共伴生锂、镓矿床10-11。随着锂资源供需关系的紧张和需求量日益增大,从粉煤灰等低品位资源中回收锂受到重视12。已有大量学者研究从粉煤灰中提取 Li 等共伴生金属元素,采用的方法主要包括酸法、碱法、酸碱联合法等13-14。但是在粉煤灰高值化利用过程中,铁杂质的存在会增加锂产品提取过程中的酸耗,严重影

    5、响锂产品的纯度及回收率等,降低粉煤灰高值利用的经济效益。因此,铁杂质的选择性去除对于粉煤灰高值化利用具有重要意义。目前,从粉煤灰等矿物中除铁的方法主要有磁选法、浮选法、酸浸法等15,其中磁选法和酸浸法是从粉煤灰中分离铁杂质的主要方法16。相比酸浸法,磁选法是一种环境友好的除铁方法,可大批量处理,易于工业化生产,对于含磁性氧 收稿日期:2021-12-12基金项目:国家自然科学基金项目(41802190)作者简介:臧静坤(1995-),女,硕士,研究方向为难选矿石的选矿及资源综合利用。通信作者:程伟(1983-),男,博士,教授,研究方向为煤系资源利用与煤地球化学。第 5 期矿产综合利用2023

    6、 年 10 月Multipurpose Utilization of Mineral Resources 63 化铁较高的粉煤灰具有较好的除铁效果,主要分为湿式磁选和干式磁选,前者占主导17。粉煤灰中的铁主要以磁铁矿和赤铁矿两种形式存在,铁的存在形式会影响磁选除铁的效果,以磁铁矿形式存在的铁能够通过磁选有效去除。粉煤灰中磁性极弱的赤铁矿可以在还原剂的存在下一定程度上被还原为强磁性的磁铁矿18。本文以贵州某电厂粉煤灰为研究对象,在系统研究粉煤灰基本性质(粒度组成、矿物组成、化学成分、形貌及微区成分、铁的物相组成)的基础上,采用还原焙烧的方法将粉煤灰中弱磁性的赤铁矿转化为强磁性的磁铁矿,再采用湿式

    7、磁选方法对粉煤灰进行除铁研究,为粉煤灰高值化利用过程中铁杂质的去除提供借鉴。1实验材料与方法实验所用粉煤灰来自贵州某电厂。实验所用氢氟酸、硝酸、高氯酸均为优级纯,活性炭为分析纯。利用激光粒度仪(LS13320 型)测定粉煤灰的粒度组成;利用 X 射线衍射仪(XRD,D8advance)对粉煤灰进行矿物组成分析,设置扫描角度范围为 1080,扫描速度为 2/min。利用Zetium 型 X 射线荧光光谱仪对粉煤灰的化学成分进行检测。粉煤灰的形貌及微区成分采用扫描电子显微镜-能谱仪(SEM-EDS,S-3400N 型)进行分析。粉煤灰的烧失量按照国标 GB/T 176-2017测定。称取充分混匀后

    8、的粉煤灰样品 20 g,置于陶瓷坩埚中并加盖坩埚盖;将坩埚置于预先升温至设定温度的马弗炉中,保持炉门密闭焙烧一定时间后,将粉煤灰快速倒入盛有 200 mL 水的烧杯中水淬冷却,待粉煤灰矿浆冷却至室温后,将其充分搅拌均匀,利用磁选管进行磁选除铁实验。磁选精矿和尾矿过滤后置于电热恒温鼓风干燥箱中于 105 干燥 2 h 后称重。粉煤灰原样及磁选后的精矿和尾矿湿法消解后利用电感耦合等离子发射光谱仪(ICP-AES,icap 7400)测定锂和铁元素含量。2结果与讨论 2.1粉煤灰基本性质 2.1.1粒度组成粉煤灰试样粒度组成分析结果见表 1。原灰中-75 m 产率高达 83.4%,其中主粒级为-38

    9、 m58.0%,+125 m 颗粒仅 5.1%,整体颗粒较细。粉煤灰中锂和铁主要赋存在-75 m 的颗粒中,分布率分别达 85.50%和 87.35%。表 1 粉煤灰试样粒度组成Table 1 Particle gradation of coal fly ash sample粒级/m产率/%Li含量/(g/t)Li分布率/%Fe含量/%Fe分布率/%各粒级筛上累积各粒级各粒级筛上累积各粒级各粒级筛上累积+1255.15.1252.94.504.506.382.782.34-125+7511.516.6249.110.0014.507.657.5310.31-75+4518.635.2262.5

    10、17.0431.5410.2716.3426.65-45+386.842.0276.96.5738.1113.818.0334.68-3858.0100.0305.861.89100.0013.1765.32100.00合计100.0286.6100.0011.69100.00 2.1.2矿物组成粉煤灰试样的 X 射线衍射结果表明,粉煤灰中主要矿物为莫来石和石英,其次为磁铁矿和赤铁矿(图 1)。莫来石通常是由煤燃烧过程中含Al、Si 的无机成分高温熔融热化学反应形成的19。玻璃体是高温熔融的粉煤灰在急剧冷却时形成的非晶态结构20,粉煤灰的 XRD 图谱在 1530的区域出现比较宽大的特征衍射峰

    11、,说明有大量玻璃体的存在21。铁物相定量分析结果表明,粉煤灰中的铁主要以磁铁矿和赤铁矿的形式存在,二者占粉煤灰总铁含量的 83.10%,其次为硅酸铁、碳酸铁和硫化铁,含量较低(表 2)。2.1.3化学成分粉煤灰化学成分分析见表 3,粉煤灰中SiO2和 Al2O3含量较高,二者共占 57.77%,其次 64 矿产综合利用2023 年是 Fe2O3、TiO2和 CaO,分别为 14.58%,3.56%和 2.50%,其他常量元素的氧化物含量相对较低。粉煤灰中残碳的含量为 4.20%,烧失量为 5.40%。微量元素 Li 的含量达到 307 g/t,具有一定的综合利用价值。表 3 粉煤灰试样的化学成

    12、分/%Table 3 Chemical composition of coal fly ash sampleSiO2Al2O3Fe2O3TiO2CaOSO3K2O Na2OLOICLi*36.88 20.89 14.58 3.56 2.50 2.17 1.95 1.11 5.40 4.20 307LOI为烧失量;*单位为g/t。2.1.4形貌及微区成分利用扫描电子显微镜对粉煤灰的微观形貌进行了研究(图 2),发现粉煤灰主要以规则的球状颗粒存在,同时有少量不规则形状颗粒存在。球状颗粒表面光滑且大小不一,粒径较小的颗粒一般附着在粒径较大颗粒的表面。此外,观察到有薄壁子母珠(也称复珠)形式的玻璃微珠

    13、存在,内外层微珠分别称为子珠和母珠,熔体先形成空心母珠后,珠内挥发性物质或熔体冷却形成玻璃微珠22,这主要与煤的成分和微结构有关,与煤 22244442222233311110203040506070802/()1石英2莫来石3磁铁矿4赤铁矿图 1 粉煤灰试样 X 射线衍射Fig.1 XRD of coal fly ash sample 表 2 粉煤灰试样中铁的物相定量分析Table 2 Quantitative analysis of iron phase in coal fly ashsample铁相态金属量/%分布率/%磁铁矿中铁5.4644.35赤褐铁矿中铁4.7738.75硅酸铁中铁

    14、1.5712.75碳酸铁中铁0.423.41硫化铁中铁0.090.74总铁12.31100.00(a)(b)(c)(d)元素重量/%C K 60.05O K 20.21AlK0.85FeK 18.89元素重量/%OK 43.55AlK 19.71SiK 26.80FeK6.29K K3.65元素重量/%OK41.13AlK 17.63SiK26.23FeK 15.01元素重量/%OK13.81AlK12.08SiK20.89FeK 47.30K K5.91+图 2 粉煤灰试样扫面电镜图像及能谱分析Fig.2 Scanning electron microscopy-energy dispers

    15、ive spectrometer analysis of coal fly ash sample 第 5 期2023 年 10 月臧静坤等:高锂粉煤灰磁选除铁实验 65 炭颗粒燃烧过程也有一定联系23。由能谱分析结果可知,粉煤灰主要由 O、Al、Si、Fe 等几种元素组成,特殊形貌粉煤灰颗粒主要元素组成与球形粉煤灰颗粒相差不大,只是含量不同。标记点处 C 元素含量占比较大,证实粉煤灰中存在未燃尽的碳。2.2磁选实验为探索粉煤灰试样磁选脱铁的可能性,首先利用磁选管对粉煤灰试样直接进行磁选。在不同的磁场强度下,磁选除铁率维持在较低的范围内(39.94%43.01%之间)。由于粉煤灰中含一定量的赤铁

    16、矿,故考虑采用还原焙烧-磁选的方式进行除铁研究。2.3还原焙烧条件对磁选效果的影响 2.3.1活性炭添加量通过向粉煤灰试样中加入活性炭进行还原焙烧,磁化焙烧温度和反应时间分别为 700、30 min,碳添加量分别为活性炭与粉煤灰质量比为0%、0.5%、1.0%、5.0%、10.0%、15.0%。对焙烧产物进行一次粗选实验,保持磁选条件不变(磁场强度为 240 mT),考查不同活性炭添加量对于磁选除铁效果的影响。由图 3 可知,随着活性炭添加量的增加,Li 的回收率和 Fe 的去除率均先出现小幅度降低和升高后保持不变。由于活性炭添加量对于 Fe 的去除率影响不明显,说明活性炭的额外添加不能有效促

    17、进还原反应的进行。原因可能是以 C 为还原剂,按照方程式(3Fe2O3+C2Fe3O4+CO)计算的理论需碳量为 1.59%,由于粉煤灰中残碳的含量较高(4.20%),超过理论需碳量,足以进行还原反应。因此,为了降低成本,后续实验中将选择利用粉煤灰中的残碳进行还原焙烧。2.3.2焙烧温度保持焙烧时间为 30 min,在不添加活性炭的条件下,考查不同焙烧温度(550、600、650、700、750、800、850)对粉煤灰磁选效果的影响,结果见图 4。随着焙烧温度的升高,Li 的回收率呈现降低趋势,当焙烧温度高于 700 时,Li 回收率降低幅度明显;Fe 的去除率随焙烧温度的升高而增大。焙烧温

    18、度的升高促进了还原反应,但是为了实现较高的 Fe 去除率同时减少 Li 的损失,选择较佳焙烧温度为 700。908070605040908070605040550600650700750800850LiLi 回收率/%Fe 去除率/%Fe焙烧温度/图 4 焙烧温度对磁选效果的影响Fig.4 Effect of roasting temperature on magnetic separation 2.3.3焙烧时间焙烧温度控制为 700 时,在不添加活性炭条件下考查不同焙烧时间(15、30、45、60、90 min)对粉煤灰磁选除铁效果影响,结果见图 5。由实验结果可知,Li 的回收率随着焙烧

    19、时间的增加大致呈下降的趋势,Fe 的去除率随焙烧时间的增加呈现先增大后减小的趋势,焙烧时间为45 min 时 Fe 去除率达到极大,为 70.27%。可能是由于前期残碳含量充足,焙烧促进还原反应的进行,但是随着焙烧时间的延长,还原剂耗尽,CO 浓度降低,导致还原反应速率降低。综合考虑Li 回收率和 Fe 去除率,选择较优的焙烧时间为45 min。2.4磁选条件对脱铁效果的影响 2.4.1磁场强度以粉煤灰中的残碳为还原剂,焙烧温度为700,焙烧时间为 45 min,将磁选管激磁电流分 100908070605040302010090807060504030200246810121416LiLi

    20、回收率/%Fe 去除率/%Fe活性炭添加量/%图 3 活性炭添加量对磁选效果影响Fig.3 Effect of activated carbon addition onmagnetic separation 66 矿产综合利用2023 年别设置为 0.5、1.0、1.5、2.0、2.5、3.0、3.5 A(所对应磁场强度分别为 160、240、270、300、320、340、350 mT)时,考查磁场强度对磁选效果影响见图 6。可以得出,随着磁场强度的增大,Li 的回收率逐渐降低,Fe 的去除率大致呈升高的趋势,说明增大磁场强度有助于 Fe 的去除。综合考虑 Li 回收率和 Fe 去除率,选择

    21、激磁电流为 1.0A,即磁场强度为 240 mT 为较优磁场强度。767472706866646260767472706866646260153045607590LiLi 回收率/%Fe 去除率/%Fe被烧时间/min图 5 焙烧时间对磁选效果的影响Fig.5 Effect of roasting time on magnetic separation 9080706050409080706050400.51.01.52.02.53.03.5LiLi 回收率/%Fe 去除率/%Fe激磁电流/A图 6 磁场强度对磁选效果的影响Fig.6 Effect of magnetic field inte

    22、nsity onmagnetic separation 2.4.2磁选工艺为了进一步提高锂的回收率同时实现铁的高效去除,在较优的还原焙烧条件下,选择磁场强度为 240 mT,对还原焙烧后得到的粉煤灰试样进行磁选工艺的研究。一次粗选后,粉煤灰中 Li 的回收率为 72.71%,同时去除了 68.18%的 Fe。为了提高 Li 的回收率,对一次粗选后的锂尾矿进行扫选,结果 Li 的回收率增加至 78.86%,Fe 的去除率略有下降至 65.79%。对一次粗选、一次扫选后尾矿再次扫选,得到 Li 的回收率为 80.31%,同时 Fe 的去除率为 63.27%。随着扫选次数的增加,Fe 的去除率大致呈

    23、线性下降,而 Li 的回收率逐渐增大,且一次扫选时 Li 回收率增大较为明显,两次扫选时 Li 回收率增幅平缓。因此,为实现铁杂质的选择性去除,一次粗选-两次扫选的磁选工艺较优(图 7)。原矿还原焙烧粗选尾矿锂精矿一次 扫选二次 扫选图 7 磁选工艺流程Fig.7 Magnetic separation process 3结论(1)粉煤灰试样中锂的含量达到 307 g/t,属于富锂粉煤灰,具有提取利用的价值。该粉煤灰整体颗粒较细,且 85.50%的锂和 87.35%的铁赋存在-75 m 的颗粒中。原灰中主要矿物为莫来石和石英,SiO2和 Al2O3的含量达到 57.77%,其次是 Fe,占 1

    24、4.58%,其中包括 5.46%的磁铁矿以及4.77%的赤铁矿。(2)以粉煤灰中的残碳作为还原剂,焙烧温度为 700,焙烧时间为 45 min,磁场强度为240 mT,对粉煤灰进行一次粗选-两次扫选,此时锂的回收率达到 80.31%,同时可去除 63.27%的铁。该还原焙烧-湿式磁选的方法实现了铁杂质的选择性去除,为下一步从粉煤灰中湿法提取锂提供了有利条件。参考文献:1 JI R,ZHANG Z T,YAN C,et al.Preparation ofnovelceramic tiles with high Al2O3 content derived from coalfly ashJ.Con

    25、struction and Building Materials,2016,114:888-第 5 期2023 年 10 月臧静坤等:高锂粉煤灰磁选除铁实验 67 895.2 YAO Z T,XIA M S,SARKER P K,et al.A review of thealumina recovery from coal fly ash,with a focus in ChinaJ.Fuel,2014,120:74-85.3 DING J,MA S H,SHEN S,et al.Research andindustrialization progress of recovering alum

    26、ina from fly ash:aconcise reviewJ.Waste Management,2016,60:375-387.4 2020 年全国大、中城市固体废物污染环境防治年报 R.生态环境部,2020.National report on prevention and control ofenvironmentalpollution by solid wastein large and mediumcities in 2020R.Ministry of Ecology and the Environment(MEP),2020.5 HOCK J L,LICHTMAN D.The

    27、development of autoclavedcellular concreteJ.Cellular Concrete,1998,71.6 张金山,李彦鑫,曹永丹.粉煤灰的综合利用现状及存在问题浅析J.矿产综合利用,2017(5):22-26.ZHANG J S,LI Y X,CAO Y D.Current situation ofcomprehensive utilization of fly ash and analysis of existingproblemsJ.Multipurpose Utilization of Mineral Resources,2017(5):22-26.

    28、7 张汉鑫,李慧,谢珊珊,等.粉煤灰处理及资源利用J.矿产综合利用,2018(5):25-27.ZHANG H X,LI H,XIE S S,et al.Treatment and resourceapplication of fly ashJ.Multipurpose Utilization of MineralResources,2018(5):25-27.8 HERN N S,CHIMENOS J M,FERN NDEZ AI,et al.Ionflotation of germanium from fly ash aqueous leachatesJ.Chemical Engineer

    29、ing Journal,2006,118(1-2):69-75.9 TORRALVO F A,C Fernndez-Pereira.Recovery ofgermanium from real fly ash leachates by ion-exchangeextractionJ.Minerals Engineering,2011,24(1):35-41.10 王涛,张新军.煤中伴生矿产赋存状态及提取方法综述J.矿产综合利用,2019(4):21-25.WANG T,ZHANG X J.Summary of occurrence andextraction methods of associ

    30、ated minerals in coalJ.Multipurpose Utilization of Mineral Resources,2019(4):21-25.11 DAIS F,YAN X Y,WARD C R,et al.Valuable elementsin Chinese coals:a reviewJ.International Geology Review,2018,60(5-6):590-620.12 QIN S J,ZHAO C L,LI Y H,et al.Review of coal as apromising source of lithiumJ.Internati

    31、onal Journal of Oil Gasand Coal Technology,2015,9(2):215-229.13 LI S Y,BO P H,KANG L W,et al.Activationpretreatment and leaching process of high-alumina coal fly ashto extract lithium and aluminumJ.Metals-Open AccessMetallurgy Journal,2020,10(7):893.14 王腾飞,张金山,李侠,等.碱法提取高铝粉煤灰中氧化铝的研究进展J.矿产综合利用,2019(1)

    32、:16-21.WANG T F,ZHANG J S,LI X,et al.Research progress ofextracting alumina in alkali method from high-alumina coal flyashJ.Multipurpose Utilization of Mineral Resources,2019(1):16-21.15 王志明.粉煤灰酸法提取氧化铝过程除铁技术研究进展J.化工管理,2020(27):112-113.WANG Z M.Research progress of iron removal technology inthe proce

    33、ss of extracting alumina from fly ash by acidmethodJ.Chemical Enterprise Management,2020(27):112-113.16 陈铁军,庄骏,展礼仁,等.粉煤灰干湿联合磁选提铁试验研究J.矿冶工程,2017,37(2):60-63.CHEN T J,ZHUANG J,ZHAN L R,et al.Extraction of ironfrom fly ash by wet-dry magnetic separationJ.Mining andMetallurgical Engineering,2017,37(2):6

    34、0-63.17 孙少博,张永锋,崔景东,等.粉煤灰高值化利用中的除铁工艺J.化工新型材料,2015,43(1):223-225.SUN S B,ZHANG Y F,CUI J D,et al.Process of iron removalfrom fly ash in use of high valueJ.New Chemical Materials,2015,43(1):223-225.18 GAO X,ZHOU T,PENG B,et al.Selective reduceroasting magnetic separation towards efficient and cleaning

    35、removal of iron values from bauxite residualJ.CanadianMetalurgical Quarterly,2019,58(4):410-418.19 刘康.粉煤灰硫酸焙烧法提取氧化铝过程的研究 D.北京:北京科技大学,2015.LIU K.Process study of extracting alumina from coal fly ashusing sulfuric acid roasting methodD.Beijing:BeijingUniversity of Science and Technology,2015.20 杨权成,马淑

    36、花,谢华,等.高铝粉煤灰提取氧化铝的研究进展J.矿产综合利用,2012(3):3-7.YANG Q C,MA S H,XIE H,et al.Research progress ofextracting alumina from high-alumina fly ashJ.MultipurposeUtilization of Mineral Resources,2012(3):3-7.21 VASSILEV S V,VASSILEVA C G.A new approach forthe classification of coal fly ashes based on their origin

    37、,composition,properties,and behaviourJ.Fuel,2007,86(10-11):1490-1512.22 邵培.高铝煤与煤灰中 Li-Ga-REE 等多元素共生组合特征及协同分离 D.徐州:中国矿业大学,2019.SHAO P.Paragenetic association and synergistic separation ofLi-Ga-REE multielements in high-alumina coal and coal ash:acase study of Datong coalfieldD.Xuzhou:China University

    38、of Mining and Technology,2019.23 徐红,陈小明,徐光平.华能南京电厂粉煤灰中微珠的矿物相特征及形成机理探讨J.高校地质学报,2000(1):80-88.XU H,CHEN X M,XU G P.Discussion on the mineral phasecharacteristics and formation mechanism of microbeads in thefly ash of Huaneng Nanjing Power PlantJ.Geological Journalof China Universities,2000(1):80-88.68

    39、 矿产综合利用2023 年Iron Removal from a High-lithium Coal Fly Ash by Magnetic SeparationZang Jingkun,Cheng Wei,Pan Xueling(College of Mining,Guizhou University,National&Local Joint Laboratory of Engineering for EffectiveUtilization of Regional Mineral Resources from Karst Areas,Guizhou Key Laboratory of Co

    40、mprehensiveUtilization of Non-metallic Mineral Resources,Guiyang,Guizhou,China)Abstract:This is an essay in the field of mineral processing engineering.In this study,coal fly ash from apower plant in Guizhou was used as the research object.A series of test methods were comprehensivelyapplied to the

    41、determination of the mineral composition and element content of coal fly ash.The results showthat the main minerals in coal fly ash are mullite,quartz and iron minerals(5.46%magnetite and 4.77%hematite),and the main chemical components are SiO2,Al2O3 and Fe2O3,with the contents of 36.88%,20.89%and 1

    42、4.58%,respectively.In addition,the content of lithium is as high as 307 g/t,which shows acertain comprehensive utilization value.Particle size analysis shows that the cumulative yield of coal fly ashbelow 75 m is as high as 83.4%,which indicates that the overall particles are finer.Lithium and iron

    43、aremainly concentrated in the-75 m fraction.Reduction roasting was used to convert the weakly magnetichematite in coal fly ash into strong magnetic magnetite,and then the wet magnetic separation method wasused to remove iron from the fly ash.The results show that with the residual carbon in coal fly

    44、 ash as thereducing agent,the roasting temperature 700,the roasting time 45 min,and the magnetic field strength240 mT,and followed by a magnetic separation process of one roughing-two sweeping,the iron removalrate reaches 63.27%,and the lithium recovery is 80.31%.Keywords:Mineral processing engineer

    45、ing;Coal fly ash;Reduction roasting;Magnetic separation;Ironremoval (上接第 62 页)Thermodynamics Analysis on Hydrochloric Acid Leaching for WasteCeria-Based Rare Earth Polishing PowderDong Shuo1,2,Zhang Bangwen1,2,Zhao Ruichao1,Bulin Chaoke2,Liu Fang3(1.Instrumental Analysis Center,Inner Mongolia Univer

    46、sity of Science&Technology,Baotou,InnerMongolia,China;2.Materials and Metallurgy School,Inner Mongolia University of Science&Technology,Baotou,Inner Mongolia,China;3.Inner Mongolia Jincai Mining Co.,Ltd,Hohhot,Inner Mongolia,China)Abstract:This is an essay in the field of metallurgical engineering.T

    47、hermodynamics of the reaction,hydrochloric acid leaching for waste ceria-based rare earth polishing powder,was studied in this work.Theinfluences on the leaching rate of the waste polishing powder was respectively considered includinghydrochloric acid concentration and leaching temperature in the ex

    48、periment.The result of the Gibbs freeenergy of leaching reaction and leaching experiment showed,thermodynamics theoretical analysis wasconsistent with experiment date for CeO2 and La2O3.CeO2 could not be immersed in dissolution,and La2O3was easy to get leached.However,the experiment result was quite

    49、 opposite of theoretical thermodynamicscalculation for Al2O3.The Gibbs free energy of leaching reaction for Al2O3 were always a positive value,and Al2O3 from the waste polishing powder couldnt be immersed by hydrochloric acid,but experimentresult indicated that the Al2O3 leaching rate can be stabili

    50、zed above 91%.Amorphous forms Al2O3 had highreactive activity in the waste,but the thermodynamic parameter of inert Al2O3 crystal structure(corundum)was adopted in the Gibbs free energy calculation.Keywords:Metallurgical engineering;Waste ceria-based rare earth polishing powder;Hydrochloric acidleac


    注意事项

    本文(高锂粉煤灰磁选除铁实验.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png