欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    [高一数学]不等式恒成立问题的处理.doc

    • 资源ID:1227737       资源大小:547.05KB        全文页数:7页
    • 资源格式: DOC        下载积分:3金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    [高一数学]不等式恒成立问题的处理.doc

    1、不等式恒成立问题的处理恒成立问题在解题过程中大致可分为以下几种类型:一次函数型;二次函数型; 其他类不等式恒成立一、一次函数型nmoxy给定一次函数y=f(x)=ax+b(a0),若y=f(x)在m,n内恒有f(x)0,则根据函数的图象(直线)可得上述结论等价于同理,若在m,n内恒有f(x)2a+x恒成立的x的取值范围。解:原不等式转化为(x-1)a+x2-2x+10,设f(a)= (x-1)a+x2-2x+1,则f(a)在-2,2上恒大于0,故有:即解得:x3.例2. 已知(其中a为正常数),若当x在区间1,2内任意取值时,P的值恒为正,求b的取值范围。解:P变形为 设 因此,原题变为当t在

    2、区间0,1内任意取值时,f(t)恒为正,求b的取值范围。由充要条件,当(1) 或 (2)解(1)得解(2)得故,当时, 当例3 设,若当时,P0恒成立,求x的变化范围。解:设当时的图像是一条线段,所以a在上变动时,P恒为正值的充要条件是 即 解得即x的取值范围是二、 二次函数型(1)当二次函数的定义域为R时: 若二次函数y=ax2+bx+c (a0)大于0恒成立,则有若二次函数y=ax2+bx+c (a0)小于0恒成立,则有例1.若函数在R上恒成立,求m的取值范围。略解:要使在R上恒成立,即在R上恒成立。 时, 成立 时,由,可知,例2已知函数的定义域为R,求实数的取值范围。解:由题设可将问题

    3、转化为不等式对恒成立,即有解得。所以实数的取值范围为。练习1:.已知函数,在R上恒成立,求的取值范围。(2)当二次函数的定义域不是R时,即二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根与系数的分布知识求解;有时也可以转化为求最值。例1:若时,恒成立,求的取值范围。解:,令在上的最小值为。当,即时, 又 不存在。当,即时, 又 当,即时, 又 总上所述,。变式2:若时,恒成立,求的取值范围。解法一:分析:题目中要证明在上恒成立,若把移到等号的左边,则把原题转化成左边二次函数在区间时恒大于等于0的问题。 略解:,即在上成立。 22综上所述,。解法二:(利用根的分布情况知识)当,即时, 不

    4、存在。当,即时,当,即时, 综上所述。例2. 已知函数在其定义域内恒为非负,求方程的根的取值范围。解:因为f(x)恒为非负,则解得,方程化为当时,则 所以所以 当时,则所以 所以方程的根的取值范围是例2设,当时,恒成立,求实数的取值范围。解:设,则当时,恒成立当时,显然成立;Oxyx-1当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。三、 其他类不等式恒成立问题一般转化为求最值 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例1已知,当时,恒成立,求实数的取值范围。解:设,则由题可知对任意恒成立令,得而即实数的取值范围为。例2函数,若对

    5、任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得注:本题还可将变形为,讨论其单调性从而求出最小值。分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立实际上,上题就可利用此法解决。例1已知函数时恒成立,求实数的取值范围。解: 将问题转化为对恒成立。令,则由可知在上为减函数,故即的取值范围为。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。例2.已知函数,常数,求

    6、(1)函数的定义域;(2)当满足什么条件时在区间上恒取正。解:(1) ,又 定义域(2)欲使在恒成立,则在恒成立,由于,所以函数在单调递增,所以且。例5 已知函数在定义域上为减函数,若对于任意的成立,求的取值范围。(纠错64页)例3 若不等式在上恒成立(或改为有解)求的取值范围。数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1)函数图象恒在函数图象上方;2)函数图象恒在函数图象下上方。x-2-4yO-4例1设 , ,若恒有成立,求实数的取值范围. 分析:在同一直角坐标系中作出及 的图象 如图所示,的图象是半圆 的图象是平行的直线系。要使恒成立,则圆心到直线的距离满足 解得(舍去)


    注意事项

    本文([高一数学]不等式恒成立问题的处理.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png