圆—复习专题.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复习 专题
- 资源描述:
-
第六章《圆》专题复习1——圆的基本性质和计算 一、课前训练 1、计算:. 二、圆的有关性质(读一读,记一记) 1、弧、圆心角、弦之间的关系:在同圆或等圆中,如果两条弧、两个圆心角或两条弦中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等. 2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 4、圆周角定理及其推论: 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:圆内接四边形对角互补。 5、圆的对称性:圆是轴对称图形,其对称轴是任意一条经过圆心的直线;圆是中心对称图形,对称中心是圆心。 三、命题点1:圆周角定理及其推论 1. 如图,点A、B、C是⊙O上的三点,若∠OBC=50°,则∠A的度数是( ) A. 40° B. 50° C. 80° D. 100° 第1题图 第2题图 第3题图 第4题图 2. 如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于( ) A. 55° B. 60° C. 65° D. 70° 3. 如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8 cm,ON=6 cm,则该圆玻璃镜的半径是( ) A. cm B. 5 cm C. 6 cm D. 10 cm 4. 如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数为( ) A. 100° B. 110° C. 120° D. 130° 5. 如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为________. 第5题图 第6题图 第7题图 6. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°. 7.如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______度. 8 (2016省卷16,4分)如图,点P是四边形ABCD外接圆⊙O上任意一点,且不与四边形顶点重合.若AD是⊙O的直径,AB=BC=CD,连接PA,PB,PC.若PA=a,则点A到PB和PC的距离之和AE+AF=__________.[来源:学#科#网] 9、如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是( ) A. 25° B. 30° C. 40° D. 50° 四、命题点2:垂径定理及其推论 10.如图,AB为⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( ) A. 10 B. 8 C. 5 D. 3 第10题图 第11题图 第12题图 第13题图 11.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( ) A. B. C. D. 12.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2.以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________. 13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8 cm,则⊙O的半径为________cm. 14.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上 两点,且∠MEB=∠NFB=60°,则EM+FN=________. 五、命题点3:与圆有关的计算网ZXXK] 弧长公式: 扇形面积公式: 15、若扇形的半径为6,圆心角为120°,则此扇形的弧长是______,面积是______ 16. (2016省卷14,4分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12 cm,OA=13 cm,则扇形AOC中的长是_______cm 17、.(2013省卷16,4分)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是________ 18. (2012省卷10,4分)如图,在ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________(结果保留π).[来源:Z§xx§k.Com] 第16题 第17题 第18题 19、如图,扇形AOB中,OA=2,C为上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为( ) A. - B. -2 C. - D. -2 20. (2015省卷9,3分)如图某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( ) A. 6 B. 7 C. 8 D. 9 21.△ABC中,AC=6,BC=8,∠C=90°,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长. 22、如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°. (1)求∠P的度数; (2)若⊙O的半径长为4 cm, 求图中阴影部分的面积. 方法归纳: 1、求角度,通常是考虑圆心角、圆周角之间的关系。 2、运用垂径定理及其推论求线段长的关键是构造直角三角形.最常用的方法是连接圆心和圆中弦的一个端点,作出圆心到弦的距离,根据勾股定理求解;或在直角三角形中,已知一直角边与斜边的关系,得到角度关系,再利用三角函数求解. 3、不规则图形求面积,通常是用切割拼补等方法转化为规则图形进行求解。 4、本节知识结构图展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




圆—复习专题.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/9073469.html