分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型MOSFET功耗估计及散热.doc

  • 上传人:xrp****65
  • 文档编号:8974857
  • 上传时间:2025-03-09
  • 格式:DOC
  • 页数:4
  • 大小:182KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    MOSFET 功耗 估计 散热
    资源描述:
    DC/DC变换中MOSFET功耗计算 本文分析了一个多相、同步整流、降压型CPU电源中MOSFET功耗的计算方法。 1 MOSFET功耗的计算 为了确定一个MOSFET是否适合于特定的应用,必须计算其功耗,MOSFET功耗(PL)主要包含阻性损耗(PR)和开关损耗(PS)两部分,即PL=PR+PSMOSFET的功耗很大程度上依赖于它的导通电阻RDS(on),但是,MOSFET的RDS(on)与它的结温Tj有关。而Tj又依赖于MOSFET管的功耗以及MOSFET的热阻θJA。由于功耗的计算涉及到若干个相互依赖的因素,为此,可以采用一种迭代过程获得我们所需要的结果,如图1流程所示。 迭代过程起始于为每个MOSFET假定一个Tj,然后,计算每个MOSFET各自的功耗和允许的环境温度。当允许的环境温度达到或略高于机壳内最高温度设计值时,这个过程便结束了。这是一种逆向的设计方法,因为,先从一个假定的Tj开始计算,要比先从环境温度计算开始容易一些。 能否将这个计算所得的环境温度尽可能地提高呢?回答是不行的。因为,这势必要求采用更昂贵的MOSFET,并在MOSFET下铺设更多的铜膜,或者要求采用一个更大、更快速的风扇产生气流等,所有这些都是不切实际的。 对于开关和同步整流MOSFET,可以选择一个允许的最高管芯结温Tj(hot)作为迭代过程的出发点,多数MOSFET的数据手册只规定了+25℃下的最大RDS(on),不过最近有些产品也提供了+125℃下的最大值。MOSFET的RDS(on)随着温度的增高而增加,典型温度系数在0.35%/℃~0.5%/℃之间,如图2所示。如果拿不准,可以用一个较为保守的温度系数和MOSFET的+25℃规格(或+125℃规格),在选定的Tj(hot)下以最大RDS(on)作近似估算,即 式中:RDS(on)SPEC为计算所用的MOSFET导通电阻; TSPEC为规定RDS(on)SPEC时的温度。 利用计算出的RDS(on)hot可以确定同步整流和 开关MOSFET的功耗。为此,将进一步讨论如何计算各个MOSFET在给定的管芯温度下的功耗,以及完成迭代过程的后续步骤,其整个过程详述如图1所示。 1.1 同步整流的功耗 除最轻负载外,同步整流MOSFET的漏、源电压在开通和关闭过程中都会被续流二极管钳位。因此,同步整流几乎没有开关损耗,它的功耗PL只须考虑阻性损耗即可。最坏情况下的损耗发生在同步整流工作在最大占空比时,也就是输入电压达到最低时。利用同步整流的RDS(on)和工作占空比,通过欧姆定律可以近似计算出它的功耗。 1.2 开关MOSFET的功耗 开关MOSFET的阻性损耗PR计算和同步整流非常相似,也要利用它的占空比(但不同于前者)和RDS(on)hot。 开关MOSFET的开关损耗计算起来比较困难,因为它依赖于许多难以量化并且没有规范的因素,这些因素同时影响到开通和关断过程。为此,可以首先用以下粗略的近似公式对某个MOSFET进行评价,然后通过实验对其性能进行验证,即式中:Crss为MOSFET的反向传输电容(数据手册中的一个参数);fs为开关频率; Igatb为MOSFET的栅极驱动器在MOSFET处于临界导通(Vgs位于栅极充电曲线的平坦区域)时的吸收/源出电流。 若从成本因素考虑,将选择范围缩小到特定的某一代MOSFET(不同代MOSFET的成本差别很大),就可以在这一代的器件中找到一个能够使功率耗散最小的器件。这个器件应该具有均衡的阻性和开关损耗,使用更小、更快的器件所增加的阻性损耗将超过它在开关损耗方面的降低,而使用更大〔而RDS(on)更低〕的器件所增加的开关损耗将超过它对于阻性损耗的降低。 如果Vin是变化的,需要在Vin(max)和Vin(min)下分别计算开关MOSFET的功耗。最坏情况可能会出现在最低或最高输入电压下。该功耗是两种因素之和:在Vin(min)时达到最高的阻性耗散(占空比较高),以及在Vin(max)时达到最高的开关损耗。一个好的选择应该在Vin的两种极端情况下具有大致相同的功耗,并且在整个Vin范围内保持均衡的阻性和开关损耗。 如果损耗在Vin(min)时明显高出,则阻性损耗起主导作用。这种情况下,可以考虑用一个电流更大一点的MOSFET(或将一个以上的MOSFET相并联)以降低RDS(on)。但如果在Vin(max)时损耗显著高出,则应该考虑用电流小一点的MOSFET(如果是多管并联的话,或者去掉一个M0SFET),以便使其开关速度更快一点。如果阻性和开关损耗已达平衡,但总功耗仍然过高,也有多种办法可以解决:改变或重新定义输入电压范围;降低开关频率以减小开关损耗,或选用RDS(on)更低的MOSFET;增加栅极驱动电流,有可能降低开关损耗;采用一个技术改进的MOSFET,以便同时获得更快的开关速度、更低的RDS(on)和更低的栅极电阻。 需要指正的是,脱离某个给定的条件对MOSFET的尺寸作更精细的调整是不大可能的,因为器件的选择范围是有限的。选择的底线是MOSFET在最坏情况下的功耗必须能够被耗散掉。 2 关于热阻 按照图1所示,继续进行迭代过程的下一步,以便寻找合适的MOSFET来作为同步整流和开关MOSFET。这一步是要计算每个MOSFET周围的环境温度,在这个温度下,MOSFET结温将达到我们的假定值。为此,首先需要确定每个MOSFET结到环境的热阻θJA。 热阻的估算可能会比较困难。单一器件在一个简单的印刷板上的θJA的测算相对容易一些,而要在一个系统内去预测实际电源的热性能是很困难的,因为,那里有许多热源在争夺有限的散热通道。如果有多个MOSFET被并联使用,其整体热阻的计算方法,和计算两个以上并联电阻的等效电阻一样。 我们可以从MOSFET的θJA规格开始。对于单一管芯、8引脚封装的MOSFET来讲,θJA通常接近于62℃/W。其他类型的封装,有些带有散热片或暴露的导热片,其热阻一般会在40℃/W至50℃/W(见表1所列)。可以用下面的公式计算MOSFET的管芯相对于环境的温升Tj(rise),即Tj(rise)=PL×θJA(5) 接下来,计算导致管芯达到预定Tj(hot)时的环境温度Tambient,即 Tambient=Tj(hot)-Tj(rise)(6) 如果计算出的θJA低于机壳的最大额定环境温度,必须采用下列一条或多条措施: 升高预定的Tj(hot),但不要超出数据手册规定的最大值;选择更合适的MOSFET以降低其功耗;通过增加气流或MOSFET周围的铜膜降低θJA。 再重算Tambient(采用速算表可以简化计算过程,经过多次反复方可选出一个可接受的设计)。而表1为MOSFET封装的典型热阻。 表1 MOSFET封装的典型热阻 说明:由于封装的机械特性、管芯尺寸和安装及绑定方法等原因,所以同样封装类型的不用器件,以及不同制造商出品的相似封装的热阻也各不相同,为此,应仔细考虑MOSFET数据手册中的热信息。 如果计算出的Tambient高出机壳的最大额定环境温度很多,可以采取下列一条或全部措施:降低预定的Tj(hot);减小专用于MOSFET散热的铜膜面积;采用更廉价的MOSFET。 这些步骤是可选的,因为在此情况下MOSFET不会因过热而损坏。不过,通过这些步骤只要保证Tambient高出机壳最高温度一定裕量,便可以降低线路板面积和成本。 上述计算过程中最大的误差源来自于θJA。应该仔细阅读数据手册中有关θJA规格的所有注释。一般规范都假定器件安装在4.82g/cm2的铜膜上。铜膜耗散了大部分的功率,不同数量的铜膜θJA差别很大。例如,带有4.82g/cm2铜膜的D-Pak封装的θJA会达到50℃/W。但是如果只将铜膜铺设在引脚的下面,θJA将高出两倍(见表1)。如果将多个MOSFET并联使用,θJA主要取决于它们所安装的铜膜面积。两个器件的等效θJA可以是单个器件的一半,但必须同时加倍铜膜面积。也就是说,增加一个并联的MOSFET而不增加铜膜的话,可以使RDS(on)减半但不会改变θJA很多。最后,θJA规范通常都假定没有任何其它器件向铜膜的散热区传递热量。但在大电流情况下,功率通路上的每个元器件,甚至是印刷板线条都会产生热量。为了避免MOSFET过热,须仔细估算实际情况下的θJA,并采取下列措施:仔细研究选定MOSFET现有的热性能方面的信息;考察是否有足够的空间,以便设置更多的铜膜、散热器和其它器件;确定是否有可能增加气流;观察一下在假定的散热路径上,是否有其它显著散热的器件;估计一下来自周围元件或空间的过剩热量或冷量。 3 结语 热管理是大电流便携式DC/DC设计中难度较大的领域之一。这种难度迫使我们有必要采用上述迭代流程。尽管该过程能够引领热性能设计者靠近最佳设计,但是还必须通过实验来最终确定设计流程是否足够精确。应计算MOSFET的热性能,为它们提供足够的耗散途径,然后在实验室中检验这些计算,这样有助于获得一个耐用而安全的热设计。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:MOSFET功耗估计及散热.doc
    链接地址:https://www.zixin.com.cn/doc/8974857.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork