分享
分销 收藏 举报 申诉 / 12
播放页_导航下方通栏广告

类型反比例函数提高题及答案解析.doc

  • 上传人:pc****0
  • 文档编号:7982686
  • 上传时间:2025-01-29
  • 格式:DOC
  • 页数:12
  • 大小:1.20MB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    反比例 函数 提高 答案 解析
    资源描述:
    付国教案 反比例函数 提高题 1、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是(    ) 2、反比例函数的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果=2,则k的值为 (    )   A.2     B.-2    C.4      D.-4   3、如图,A、B是反比例函数上的两个点,轴于点C,轴于点D,连结AD、BC,则△ADB与△ACB的面积大小关系是  (  ) A.    B. C.    D.不能确定 4、如图,正方形OABC的面积是4,点O为坐标原点,点B在函数(k<0,x<0) 的图象上,点P(m,n)是函数(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴,y轴的垂线,垂足分别为E,F。 (1)    设矩形OEPF的面积为S1 ,判断S1 与点P的位置是否有关(不必说理由) (2)    从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2 ,写出S2与m的函数关系,并标明m的取值范围。                      5、如图,已知直线上一点B,由点B分别向x轴、y轴作垂线,垂足为A、C,若A点的坐标为(0,5). (1)若点B也在一反比例函数的图象上,求出此反比例函数的表达式。 (2)若将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,求点E的坐标. 6、(1)探究新知: 如图,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由。 (2)结论应用: ①如下左图,点M、N在反比例函数的图像上,过点M作ME⊥轴,过点N作NF⊥轴,垂足分别为E,F。试证明:MN∥EF。                       ②若①中的其他条件不变,只改变点M,N的位置如上右图所示,请判断MN与EF是否平行。 7、已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C. (1)若点D坐标是(-8,0),求A、B两点坐标及k的值. (2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式. (3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值. 8、直线y=ax(a>0)与双曲线y=交于A(x1,y1)、B(x2,y2)两点,则4x1y2-3x2y1=______. 9、如图,已知一次函数的图象与反比例函数的图象在第一象限相交于点,与轴相交于点轴于点,的面积为1,则的长为         (保留根号). 10、已知点A、B在双曲线(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=      .   11、如图所示,点、、在轴上,且,分别过点、、作轴的平行线,与反比例函数的图象分别交于点、、,分别过点作轴的平行线,分别与轴交于点,连接,那么图中阴影部分的面积之和为___________. 12、如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上. (1)求m,k的值;  (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.  (3)选做题:在平面直角坐标系中,点P的坐标为(5,0),点Q的坐标为(0,3),把线段PQ向右平移4个单位,然后再向上平移2个单位,得到线段P1Q1,则点P1的坐标为        ,点Q1的坐标为       . 13、已知点A(2,6)、B(3,4)在某个反比例函数的图象上. (1) 求此反比例函数的解析式; (2)若直线与线段AB相交,求m的取值范围. 14、如图,一次函数y=ax+b的图像与反比例函数的图像交于M、N两点. (1)利用图中条件,求反比例函数和一次函数的解析式; (2)根据图像写出使反比例函数的值大于一次函数的值的x的取值范围. 15、第一象限内的点A在一反比例函数的图象上,过A作轴,垂足为B,连AO,已知的面积为4。 (1)求反比例函数的解析式; (2)若点A的纵坐标为4,过点A的直线与x轴交于P,且与相似,求所有符合条件的点P的坐标。 (3)在(2)的条件下,过点P、O、A的抛物线是否可由抛物线平移得到?若是,请说明由抛物线如何平移得到;若不是,请说明理由。 16、已知与是反比例函数图象上的两个点. (1)求的值; (2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由. 17、如图,一次函数的图象与反比例函数的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知AO=,点B的坐标为(,m),过点A作AH⊥x轴,垂足为H,AH=HO (1)求反比例函数和一次函数的解析式; (2)求AOB的面积。 18、如图,已知:一次函数:的图像与反比例函数: 的图像分别交于A、B两点,点M是一次函数图像在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图像上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2; (1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值; (2)观察图形,通过确定x的取值,试比较S1、S2的大小. 19、近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图11,根据题中相关信息回答下列问题: (1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围; (2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生? (3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?   参考答案 1、B  2、D 3、C 4、(1)没有关系          (2)∵正方形OABC的面积为4           ∴OC=OA=2           B(-2,2)           把B(-2,2)的坐标代入中,           ,  ∴ 可k=-4 ∴ 解析式为                  ∵P(m,n)在的图象上          ∴                                   ①     当点P在B的上方时                                  (-2 < m < 0 )         ②     当点P在B的下方时 (m < -2 )       5、解:由题意得点B纵坐标为5。 又∵点B在直线y=上, ∴B点坐标为(,5)。 设过点B的反比例函数的表达式为, , ∴此反比例函数的表达式为。           (2)设点E坐标为(a,b)。 ∵点E在直线上,∴。  ∵OE=OA=5,∴。 解得或 ∵点E在第二象限,∴E点坐标为(一4,3)。 6、(1)证明:分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H 则∠CGA=∠DHB=90° ∴CG∥DH ∵△ABC与△ABD的面积相等 ∴CG=DH ∴四边形CGHD为平行四边形 ∴AB∥CD (2)①证明:连结MF,NE(如下图) 设点M的坐标为(,),点N的坐标为(,) ∵点M,N在反比例函数的图像上 ∴, ∵ME⊥轴,NF⊥轴 ∴, ∴, ∴ 由(1)中的结论可知:MN∥EF ②MN∥EF 7、解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2. ∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2). 从而. (2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上, ∴,B(-2m,-),C(-2m,-n),E(-m,-n). S矩形DCNO,S△DBO=,S△OEN =, ∴S四边形OBCE= S矩形DCNO-S△DBO- S△OEN=k.∴. 由直线及双曲线,得A(4,1),B(-4,-1), ∴C(-4,-2),M(2,2). 设直线CM的解析式是,由C、M两点在这条直线上, 得   解得. ∴直线CM的解析式是. (3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1、M1. 设A点的横坐标为a,则B点的横坐标为-a. 于是. 同理, ∴. 8、-3; 9、  10、12; 11、    12、解:(1)由题意可知,. 解得 m=3.      ∴ A(3,4),B(6,2); ∴ k=4×3=12.       (2)存在两种情况,如图:  ①当M点在x轴的正半轴上,N点在y轴的正半轴上时,设M1点坐标为(x1,0),N1点坐标为(0,y1). ∵ 四边形AN1M1B为平行四边形, ∴ 线段N1M1可看作由线段AB向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的). 由(1)知A点坐标为(3,4),B点坐标为(6,2), ∴ N1点坐标为(0,4-2),即N1(0,2);     M1点坐标为(6-3,0),即M1(3,0).  设直线M1N1的函数表达式为,把x=3,y=0代入,解得. ∴ 直线M1N1的函数表达式为. ②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).  ∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2, ∴ N1M1∥M2N2,N1M1=M2N2.    ∴ 线段M2N2与线段N1M1关于原点O成中心对称.      ∴ M2点坐标为(-3,0),N2点坐标为(0,-2). 设直线M2N2的函数表达式为,把x=-3,y=0代入,解得, ∴ 直线M2N2的函数表达式为.     所以,直线MN的函数表达式为或.  (3)选做题:(9,2),(4,5). 13、解:(1)设所求的反比例函数为,                                         依题意得: 6 =, ∴k=12. ∴反比例函数为. (2) 设P(x,y)是线段AB上任一点,则有2≤x≤3,4≤y≤6. ∵m = ,  ∴≤m≤. 所以m的取值范围是≤m≤3. 14、(1) ∵y=和y=ax+b都经过M(2,m),N(-1,-4)     ∴m=,-4=,m=2a+b,-4=-a+b     ∴k=4,m=2,a=2,b=-2     ∴y=,y=2x-2  (2)x<-l或0<x<2 15、解:(1)设反比例函数的解析式为,点A的坐标为(x,y)         (2)由题意得A(2,4),B(2,0)     点P在x轴上,设P点坐标为(x,0)         与相似有两种情况:       当时     有∴P(4,0)       当时,有     即      (10,0)或P(-6,0)     符合条件的点P坐标是(4,0)或(10,0)或(-6,0)     (3)当点P坐标是(4,0)或(10,0)时,抛物线的开口向下     不能由的图象平移得到     当点P坐标是(-6,0)时,设抛物线解析式为    抛物线过点A(2,4)             该抛物线可以由向左平移3个单位,向下平移个单位平移得到 16、解:(1)由,得,因此. (2)如图1,作轴,为垂足,则,,,因此. 由于点与点的横坐标相同,因此轴,从而. 当为底时,由于过点且平行于的直线与双曲线只有一个公共点, 故不符题意. 当为底时,过点作的平行线,交双曲线于点, 过点分别作轴,轴的平行线,交于点. 由于,设,则,, 由点,得点. 因此 解之得(舍去),因此点. 此时,与的长度不等,故四边形是梯形. 如图2,当为底时,过点作的平行线,与双曲线在第一象限内的交点为. 由于,因此,从而.作轴,为垂足, 则,设,则, 由点,得点, 因此 解之得(舍去),因此点. 此时,与的长度不相等,故四边形是梯形. 如图3,当过点作的平行线,与双曲线在第三象限内的交点为时, 同理可得,点,四边形是梯形. 综上所述,函数图象上存在点,使得以四点为顶点的四边形为梯形,点的坐标为:或或. 17、 18、 (1)   = 当时, (2)∵ 由可得:  ∴             通过观察图像可得: 当时, 当时, 当时,    19、解:(1)因为爆炸前浓度呈直线型增加, 所以可设y与x的函数关系式为 由图象知过点(0,4)与(7,46) ∴.       解得, ∴,此时自变量的取值范围是0≤≤7. (不取=0不扣分,=7可放在第二段函数中) …………………………2分 因为爆炸后浓度成反比例下降, 所以可设y与x的函数关系式为. 由图象知过点(7,46), ∴.    ∴, ∴,此时自变量的取值范围是>7. …………………………4分 (2)当=34时,由得,6+4=34,=5 . ∴撤离的最长时间为7-5=2(小时). ∴撤离的最小速度为3÷2=1.5(km/h). …………………………6分 (3)当=4时,由得, =80.5,80.5-7=73.5(小时). ∴矿工至少在爆炸后73.5小时能才下井. …………………………8分 第 11 页 共 12 页
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:反比例函数提高题及答案解析.doc
    链接地址:https://www.zixin.com.cn/doc/7982686.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork