分享
分销 收藏 举报 申诉 / 53
播放页_导航下方通栏广告

类型数字图像处理学:第9章 数学形态学原理(第9-2讲).ppt

  • 上传人:可****
  • 文档编号:7907131
  • 上传时间:2025-01-26
  • 格式:PPT
  • 页数:53
  • 大小:927.50KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数字图像处理学:第9章 数学形态学原理第9-2讲 数字图像 处理 数学 形态学 原理
    资源描述:
    单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,数字图像处理学,第,9,章 数学形态学原理,(第二讲),9.4 灰度图像的形态学处理,前边针对二值图像的形态学处理的基本运算作了系统的介绍,这些基本算法可方便地推广至灰度图像的处理。这一节我们将讨论对灰度图像的基本处理,即:膨胀、腐蚀、开运算、闭运算。由此建立一些基本的灰度形态运算法则。,这一节的重点是运用灰度形态学提取描述和表示图像的有用成分。特别是,我们将通过形态学梯度算子开发一种边缘提取和基于纹理的区域分割算法。同时,我们将讨论在预处理及后处理步骤中非常有用的平滑及增强处理算法。,与前边二值图像形态学处理理论不同的是在以下的讨论中我们将处理数字图像函数而不是集合。设,f,(,x,y,),是输入图像,,b,(,x,y,),是结构元素,它可被看作是一个子图像函数。如果,Z,表示实整数的集合,同时假设,(,x,y,),是来自,Z,X,Z,的整数,,f,和,b,是对坐标为,(,x,y,),像素灰度值的函数(来自实数集,R,的实数)。如果灰度也是整数,则,Z,可由整数,R,所代替。,9.4.1 膨胀,9.4.2 腐蚀,9.4.3 开和闭运算,9.4.4 灰度形态学的应用,函数,b,对函数,f,进行灰度膨胀可定义 ,运算式如下:,(9,49),其中 和 分别是函数,f,和,b,的定义域,和前面一样,b,是形态处理的结构元素,不过在这儿的,b,是一个函数而不是一个集合。,位移参数(,s-x,),和(,t-y,),必须包含在函数,f,的定义域内,此时它模仿二值膨胀运算定义。在这里两个集合必须至少有一个元素相交叠。还可以注意到,公式(9,48)很类似与二维卷积公式,同时,在这里用,“,最大,”,代替卷积求和并以,“,相加,”,代替相乘。,下面我们将用一维函数来解释公式(949)中的运算原理。对于仅有一个变量的函数,公式(949)可以简化,为:,(9,50),在卷积中,,f,(-,x,),仅是,f,(,x,),关于,x,轴原点的映射,正象卷积运算那样,相对于正的,s,,,函数,f,(,s-x,),将向右移,对于,-,s,,,函数,f,(,s-x,),将向左移。,其条件是(,s-x,),必须在,f,的定义域内,,x,的值必须在,b,的定义域内。这意味着,f,和,b,将相覆盖,即,b,应包含在,f,内。这和二值图像膨胀定义要求的情形是类似的,即俩个集合至少应有一个元素是相互覆盖的。最后,与二值图像的情况不同,不是结构元素,b,而是,f,平移。,公式(9,49)可以使,b,代替,f,写成平移的形式。然而,如果 比 小(这是实际中常见的),公式(9,49)所给出的形式就可在索引项中加以简化,并可以获得同样的结果。就概念而言,在,f,上滑动,b,和在,b,上滑动,f,是没有区别的。,膨胀是可以代换的,因而,f,和,b,相互代换的方法运用于公式(9,49)可以用来计算 ,结果都是一样的,而且,b,是平移函数。相反,腐蚀是不可交换的,因而,这种函数也是不可互换的。膨胀的例子可参见图9,19。,919 灰度膨胀图例,由于膨胀操作是由结构元素形状定义的邻域中选择,f+b,的最大值,因而通常对灰度图像的膨胀处理方法可得到两种结果:(,1,)如果所有的结构元素都为正,则输出图像将趋向比输入图像亮;(,2,)黑色细节减少或去除取决于在膨胀操作中结构元素相关的值和形状。,9.4.1 膨胀,9.4.2 腐蚀,9.4.3 开和闭运算,9.4.4 灰度形态学的应用,灰度图像的腐蚀定义为 ,其运算公式为:,(9,51),公式中 和 分别是,f,和,b,的定义域。平移参数,(,s+x,),和,(,t+y,),必须包含在,f,的定义域内,,与二元腐蚀的定义类似,所有的结构元素将完全包含在与被腐蚀的集合内。还应注意到公式,(9,51),的形式与二维相关公式相似,只是用,“,最小,”,取代求和,用减法代替乘积。,如果只有一个变量时,我们可以用一维的腐蚀来说明公式,(9,51),的原理。此时,表达式可简化为,:,(9,52),在相关情况下,当,s,为正时,函数,f(s+x,),将向右平移,当,s,为负时,函数,f,(,s,+,x,),将移向左边,同 时,要求 ,意味着,b,将包含在,f,的范围内。这一点同二值图像腐蚀定义的情况相似,所有的结构元素将完全包含在被腐蚀的集合内。,不同于二值图像腐蚀定义,操作中是,f,在平移,而不是结构元素,b,在平移。公式,(9,51),可以把,b,写成平移函数,由于,f,在,b,上滑动同,b,在,f,上滑动在概念上是一致的。图,9,20,展示了通过图,9,20(b),的结构元素腐蚀图,9,20(a),函数的结果。,图,9,20,灰度腐蚀图例,正如公式,(9,51),所示,腐蚀是在结构元素定义的领域内选择,(,f-b,),的最小值,因而,通常对灰度图像的膨胀处理可得到两种结果:,(,1,)如果所有的结构元素都为正,则输出图像将趋向比输入图像暗;,(,2,)在比结构元素还小的区域中的明亮细节经腐蚀处理后其效果将减弱。减弱的程度取决于环绕亮度区域的灰度值以及结构元素自身的形状和幅值。,与求补、映射相关的膨胀、腐蚀是有互补性的,即:,(,9,53,),其中,:,9.4.1 膨胀,9.4.2 腐蚀,9.4.3 开和闭运算,9.4.4 灰度形态学的应用,灰度图像开运算和闭运算的表达式与二值图像相比具有相同的形式。结构元素,b,对图像,f,作开运算处理,可定义为 ,即:,(9,54),如果是二值图像的情况,开运算是,b,对,f,的简单的腐蚀操作,接下来对腐蚀的结果再进行膨胀操作。类似的,,b,对,f,的闭运算,定义为 ,即:,(9,55),灰度图像开运算和关运算对于求补和映射也是对偶的,即:,(,9,56,),由于,,,式,(956),也可以写为,图像的开和闭运算有一个简单的几何解释。,假设看到一个三维的图像函数,f,(,x,y,),(象一个地貌地图),,x,和,y,是空间坐标轴,第三坐标轴是亮度坐标轴(即:,f,的值)。在重现中,图像作为一个平面显示,其中的任意点,(,x,y,),是,f,在该点坐标值。,假设我们想用球形结构元素,b,对,f,作开运算,这时可将,b,看作,“,滚动的球,”,。,B,对,f,的开运算处理在几何上可解释为让,“,滚动球,”,沿,f,的下沿滚动,经这一,“,滚动,”,处理,所有的比,“,小球,”,直径小的峰都磨平了。,图,9,21,解释了这一概念。图,9,21(a),为解释简单,把灰度图像简化为连续函数剖面线。,9,21(b),显示了,“,滚动球,”,在不同的位置上滚动,,9,21(c),显示了沿函数剖面线结构元素,b,对,f,开运算处理的结果。所有小于球体直径的波峰值、尖锐度都减小了。,在实际运用中,开运算处理常用于去除较小的亮点(相对结构元素而言),同时保留所有的灰度和较大的亮区特征不变。腐蚀操作去除较小的亮的细节,同时使图像变暗。如果再施以膨胀处理将增加图像的亮度而不再引入已去除的部分。,图,9,21,开和闭运算的图例,图,9,21(d),显示了结构元素,b,对,f,的闭操作处理。此时,小球(结构元素)在函数剖面上沿滚动,图,9,21(e),给出了处理结果,只要波峰的最窄部分超过小球的直径则波峰保留原来的形状。,在实际运用中,闭运算处理常用于去除图像中较小的暗点(较结构元素而言),同时保留原来较大的亮度特征。最初的膨胀运算去除较小暗细节,同时也使图像增亮。随后的腐蚀运算将图像调暗而不重新引入已去除的部分。,开运算处理满足以下的性质:,(,i,);,(ii),如果,则 ;,(iii),。,表达式 表示 是 的子集,而且在 的定 义 域 内 对 于 任 意 都有 。,类似的,闭运算处理满足以下的性质:,(,i,);,(ii),如果,则 ;,(iii),。,这些表达式的使用类似于对应的二值表达式。正如在二值情况下,对开运算处理和闭运算处理性质,(ii),和性质,(iii),被分别称作单调增加和等幂。,9.4.1 膨胀,9.4.2 腐蚀,9.4.3 开和闭运算,9.4.4 灰度形态学的应用,根据前边讨论的灰度形态学的基本运算,下边介绍一些简单的形态学实用处理算法,这些处理都是针对灰度图像进行的。,(1),形态学图像平滑,一种获得平滑的方法是将图像先进行闭运算处理然后再进行开运算处理,处理结果将去除或消减亮斑和暗斑。,(2),形态学图像梯度,除了前面对去除亮点和暗斑处理外,膨胀和腐蚀处理常用于计算图像的形态梯度,梯度用 表示,则:,经过形态学梯度处理,使输入图像灰度变化更加尖锐,与利用象,Sobel,算子这样的一类处理方法所获得的梯度图像相反,运用对称结构元素获得的形态学梯度将较少受边缘方向的影响,这一优点的获得是以运算量显著增加为代价的。,(,3,),Top-hat,变换,.,所谓的图像形态 变换用 来表示,其定义为:,(9,58),公式中,f,是输入图像,,b,是结构元素函数。这一变换的最初命名是由于用平顶圆柱和平行六面体作为结构元素 函 数,因 此,得名 (高帽)变换,它常被用于阴影的细节增强处理。,(,4,)纹理分割,.,图,9,22(a),是一幅包含两个纹理区的图像。我们的目的是分割出两个纹理区并提取两个区域的边界。由于闭运算可去除图像中的暗细节,在这种特殊情况下,依次使用较大的结构元素对输入图像进行闭运算处理。当结构元素的尺寸与小圆的尺寸相当时,它们将从图像中被除去,在原来的位置仅留下小圆曾经占有的区域的亮的背景。,处理到这种状态,仅有右边大圆区域和左边背景区域。下一步,采用相对于大圆间的间隙来说较大的结构元素作开运算处理,将去除圆间的亮的区域,同时仅留下右边包含大圆的暗区域,这样,处理的结果将产生一个右边为暗,左边为亮的区域。用一个简单的门限就可以检测出两个区域。,图,9,22,纹理分割,(,5,)粒状处理,.,粒状处理和其他处理一样,是决定一幅图像分散颗粒尺寸大小的处理。图,9,23(a),显示了包含三种不同尺寸的亮颗粒图像。这些颗粒不但重叠,而且混乱到无法检测单一个体的程度。由于与背景相比颗粒较亮,形态学处理将可以用来决定尺寸的分布。首先对原始图像用不断增大尺寸的结构元素进行开运算处理。,经过不同的结构元素的开处理后,原始图像和开运算处理后图像的差异可以被算出,处理最后,这些区别将先被归一化并作出颗粒分布的直方图。这一方法是基于这样的观点:对特殊尺寸的开运算处理将对包含最小尺寸颗粒的输入图像最有效。,因此通过计算输入图像和输出图像的差异将可获得对这些颗粒的相对数量的测量。图,9,23(b),显示了这种情况的结果。直方图表明了输入图像中最多的三种颗粒分布。,图,9,23,颗粒图像处理,图,9,24,示出了数学形态学基本处理的结果。同时,在附录八中给出了数学形态学的基本处理程序,供读者参考。,图,9,24,形态学处理效果,(,a,)原图,(,b,)梯度处理,结果,(,c,)边缘提取,结果,图,9,24,形态学处理效果,(,d,)原图二 值图像,(,e,)二值边 缘提取处理结果,(,f,)原图像,(,g,)平滑处理结果,
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:数字图像处理学:第9章 数学形态学原理(第9-2讲).ppt
    链接地址:https://www.zixin.com.cn/doc/7907131.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork