高三文科数学010.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文科 数学 010
- 资源描述:
-
东北师范大学附属中学网校(版权所有 不得复制) 期数: 0509 SXG3 010 学科:文科数学 年级:高三 编稿老师:李晓松 审稿老师:杨志勇 [同步教学信息] 寄语: 从今天开始我们进入了高三总复习阶段,笔者想和考生谈几点想法: 近几年高考数学试题坚持“新题不难、难题不怪”的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍意义的方法和相关的知识。尽管复习时间比较紧张,但我们仍然要注意回归课本知识。回归课本,并不是强记题型、死背结论,而是要抓纲悟本,对照课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练,这样复习才有实效。 预 习 篇 预习篇六 高三文科数学总复习一 ——集合 【学法引导】 集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用. 【基础知识概要】 集合的初步知识包括集合的有关概念、集合的表示方法以及集合与集合之间的关系. 1.集合的基本概念 (1)集合的关系 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素. 如果a是集合A的元素,就说a属于集合A,记作; 不含任何元素的集合叫做空集,记做. (2)集合可分为有限集与无限集; (3)集合的表示法:列举法、描述法以及图示法; (4)常见的数集:N(自然数集)、 Z(整数集)、Q(有理数集)、R(实数集). 2.集合与集合的关系 (1)对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含集合A,记作,这时也说集合A是集合B的子集,对于两个集合A与B,如果,且,那么A=B. (2)补集:如果,那么A在S中的补集. 全集:如果一个集合含有要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U表示. (3)交集:,并集:. 对于任何两个集合A,B有以下性质: 【应用举例】 例1 已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围. 解:由得x2+(m-1)x+1=0. ① ∵A∩B≠ ∴方程①在区间[0,2]上至少有一个实数解. 首先,由Δ=(m-1)2-4≥0,得m≥3或m≤-1,当m≥3时,由x1+x2=-(m-1)<0及x1x2=1>0知,方程①只有负根,不符合要求. 当m≤-1时,由x1+x2=-(m-1)>0及x1x2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内. 故所求m的取值范围是m≤-1. 例2 设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=,证明此结论. 命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题. 知识依托:解决此题的闪光点是将条件(A∪B)∩C=转化为A∩C=且B∩C=,这样难度就降低了. 错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手. 技巧与方法:由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、k∈N,进而可得值. 解:∵(A∪B)∩C=,∴A∩C=且B∩C=. ∵ ∴k2x2+(2bk-1)x+b2-1=0. ∵A∩C=, ∴Δ1=(2bk-1)2-4k2(b2-1)<0. ∴4k2-4bk+1<0,此不等式有解,其充要条件是16b2-16>0, 即b2>1. ① ∵ ∴4x2+(2-2k)x+(5+2b)=0. ∵B∩C=,∴Δ2=(1-k)2-4(5-2b)<0. ∴k2-2k+8b-19<0,从而8b<20,即b<2.5. ② 由①②及b∈N,得b=2代入由Δ1<0和Δ2<0组成的不等式组,得 ∴k=1,故存在自然数k=1,b=2,使得(A∪B)∩C=. 例3 向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都赞成的学生和都不赞成的学生各有多少人? 命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力. 知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来. 错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索. 技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系. 解:赞成A的人数为50×=30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B. 设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为+1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为33-x. 依题意(30-x)+(33-x)+x+(+1)=50,解得x=21. 所以对A、B都赞成的同学有21人,都不赞成的有8人. ●解法引导 1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题. 2.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论. 【强化训练】 一、选择题 1.集合M={x|x=,k∈Z},N={x|x=,k∈Z},则( ) A.M=N B.MN C.MN D.M∩N= 2.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠,若A∪B=A,则( ) A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤4 二、填空题 3.已知集合A={x∈R|ax2-3x+2=0,a∈R},若A中元素至多有1个,则a的取值范围是_______. 4.x、y∈R,A={(x,y)|x2+y2=1},B={(x,y)|=1,a>0,b>0},当A∩B只有一个元素时,a,b的关系式是_________. 三、解答题 5.集合A={x|x2-ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当a取什么实数时,A∩B 和A∩C=同时成立. 6.已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明. (1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上; (2)A∩B至多有一个元素; (3)当a1≠0时,一定有A∩B≠. 7.设f(x)=x2+px+q,A={x|x=f(x)},B={x|f[f(x)]=x}. (1)求证:AB; (2)如果A={-1,3},求B. 参考答案 一、1.解析:对M将k分成两类:k=2n或k=2n+1(n∈Z), M={x|x=nπ+,n∈Z}∪{x|x=nπ+,n∈Z},对N将k分成四类,k=4n或k=4n+1,k=4n+2,k=4n+3(n∈Z), N={x|x=nπ+,n∈Z}∪{x|x=nπ+,n∈Z}∪{x|x=nπ+π,n∈Z}∪{x|x=nπ+,n∈Z}. 答案:C 2.解析:∵A∪B=A,∴BA, 又B≠, ∴即2<m≤4. 答案:D 二、3.a=0或a≥ 4.解析:由A∩B只有1个交点知,圆x2+y2=1与直线=1相切,则1=,即ab=. 答案:ab= 三、5.解:log2(x2-5x+8)=1,由此得x2-5x+8=2,∴B={2,3}. 由x2+2x-8=0,∴C={2,-4},又A∩C=, ∴2和-4都不是关于x的方程x2-ax+a2-19=0的解,而A∩B ,即A∩B≠, ∴3是关于x的方程x2-ax+a2-19=0的解,∴可得a=5或a=-2. 当a=5时,得A={2,3},∴A∩C={2},这与A∩C=不符合,所以a=5(舍去);当a=-2时,可以求得A={3,-5},符合A∩C=,A∩B ,∴a=-2. 6.解:(1)正确.在等差数列{an}中,Sn=,则(a1+an),这表明点(an,)的坐标适合方程y(x+a1),于是点(an, )均在直线y=x+a1上. (2)正确.设(x,y)∈A∩B,则(x,y)中的坐标x,y应是方程组的解,由方程组消去y得:2a1x+a12=-4(*),当a1=0时,方程(*)无解,此时A∩B=;当a1≠0时,方程(*)只有一个解x=,此时,方程组也只有一解,故上述方程组至多有一解. ∴A∩B至多有一个元素. (3)不正确.取a1=1,d=1,对一切的x∈N*,有an=a1+(n-1)d=n>0, >0,这时集合A中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a1=1≠0.如果A∩B≠,那么据(2)的结论,A∩B中至多有一个元素(x0,y0),而x0=<0,y0=<0,这样的(x0,y0)A,产生矛盾,故a1=1,d=1时A∩B=,所以a1≠0时,一定有A∩B≠是不正确的. 8.(1)证明:设x0是集合A中的任一元素,即有x0∈A. ∵A={x|x=f(x)},∴x0=f(x0). 即有f[f(x0)]=f(x0)=x0,∴x0∈B,故AB. (2)证明:∵A={-1,3}={x|x2+px+q=x}, ∴方程x2+(p-1)x+q=0有两根-1和3,应用韦达定理,得 ∴f(x)=x2-x-3. 于是集合B的元素是方程f[f(x)]=x,也即(x2-x-3)2-(x2-x-3)-3=x(*)的根. 将方程(*)变形,得(x2-x-3)2-x2=0, 解得x=1,3,,-. 故B={-,-1,,3}.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高三文科数学010.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/7774144.html