量子力学周世勋习题解答第四章.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子力学 周世勋 习题 解答 第四
- 资源描述:
-
第四章习题解答 4.1.求在动量表象中角动量的矩阵元和的矩阵元。 解: # 4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。 解:基矢: 能量: 对角元: 当时, # 4.3 求在动量表象中线性谐振子的能量本征函数。 解:定态薛定谔方程为 即 两边乘以,得 令 跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为 式中为归一化因子,即 # 4.4.求线性谐振子哈密顿量在动量表象中的矩阵元。 解: # 4.5 设已知在的共同表象中,算符的矩阵分别为 求它们的本征值和归一化的本征函数。最后将矩阵对角化。 解:的久期方程为 ∴的本征值为 的本征方程 其中设为的本征函数共同表象中的矩阵 当时,有 ∴ 由归一化条件 取 对应于的本征值0 。 当时,有 ∴ 由归一化条件 取 ∴归一化的对应于的本征值 当时,有 ∴ 由归一化条件 取 ∴归一化的对应于的本征值 由以上结果可知,从的共同表象变到表象的变换矩阵为 ∴对角化的矩阵为 按照与上同样的方法可得 的本征值为 的归一化的本征函数为 从的共同表象变到表象的变换矩阵为 利用S可使对角化 # 4.6. 求连续性方程的矩阵表示 解:连续性方程为 ∴ 而 ∴ 写成矩阵形式为 # 《量子力学》考试大纲 一.绪论(3) 1.了解光的波粒二象性的主要实验事实; 2.掌握德布罗意关于微观粒子的波粒二象性的假设。 二.波函数和薛定谔方程(12) (1)理解量子力学与经典力学在关于描写微观粒子运动状态及其运动规律时的不同观念 。 (2)掌握波函数的标准化条件:有限性、连续性、单值性. (3)理解态叠加原理以及任何波函数Ψ(x,t)按不同动量的平面波展开的方法及其物理意义. (4)了解薛定谔方程的建立过程以及它在量子力学中的地位;薛定谔方程和定态薛定谔方程的关系;波函数和定态波函数的关系. (5)对于求解一维薛定谔方程,应掌握边界条件的确定和处理方法. (6)关于一维定态问题要求如下: a.掌握一维无限阱的求解方法及其物理讨论; b.掌握一维谐振子的能谱及其定态波函数的一般特点: c.了解势垒贯穿的讨论方法及其对隧道效应的解释. 三.力学量用算符表达(17) (1) 掌握算符的本征值和本征方程的基本概念;厄米算符的本征值必为实数;坐标算符和动量算符以及量子力学中一切可观察的力学量所对应的算符均为厄米算符. (2) 掌握有关动量算符和角动量算符的本征值和本征函数,它们的归一性和正交性的表达形式,以及与这些算符有关的算符运算的对易关系式. (3)电子在正点电荷库仑场中的运动提供了三维中心力场下薛定谔方程求解的范例,学生应由此了解一般三维中心力场下求解薛定谔方程的基本步骤和方法,特别是分离变量法. (4)掌握力学量平均值的计算方法.将体系的状态波函数Ψ(x)按算符的本征函数展开是这些方法中常用的方法之一,学生应掌握这一方法计算力学量的可能值、概率和平均值.理解在什么状态下力学量具有确定值以及在什么条件下,两个力学量同时具有确定值. (5)掌握不确定关系并应用这一关系来估算一些体系的基态能量. (6)掌握如何根据体系的哈密顿算符来判断该体系中可能存在的守恒量如:能量、动量、角动量、宇称等. 四.态和力学量的表象(10) (1)理解力学量所对应的算符在具体的表象下可以用矩阵来表示;厄米算符与厄米矩阵相对应;力学量算符在自身表象下为一对角矩阵; (2)掌握量子力学公式的矩阵形式及求解本征值、本征矢的矩阵方法. (3)理解狄拉克符号及占有数表象 五.微扰理论(16) (1)了解定态微扰论的适用范围和条件: (2)对于非简并的定态微扰论要求掌握波函数一级修正和能级一级、二级修正的计算. (3)对于简并的微扰论,应能掌握零级波函数的确定和一级能量修正的计算. (4)掌握变分法的基本应用; (5)关于与时间有关的微扰论要求如下: a.了解由初态 跃迁到末态的概率表达式,特别是常微扰和周期性微扰下的表达式; b.理解由微扰矩阵元Hfi≠0可以确定选择定则; c.理解能量与时间之间的不确定关系:ΔEΔt∽ d.理解光的发射与吸收的爱因斯坦系数以及原子内电子由态跃迁到态的辐射强度均与矩阵元 的模平方∣∣2 成正比,由此可以确定偶极跃迁中角量子数和磁量子数的选择定则. (5)了解氢原子一级斯塔克效应及其解释. *六、散射问题(8) 七.自旋和全同粒子(15) (1)了解斯特恩—格拉赫实验.电子自旋回转磁比率与轨道回转磁比率. (2)掌握自旋算符的对易关系和自旋算符的矩阵形式(泡利矩阵).与自旋相联系的测量值、概率、平均值等的计算以及本征值方程和本征函数的求解方法. (3)了解简单塞曼效应的物理机制. (4)了解L-S藕合的概念及碱金属原子光谱双线结构和物理解释. (5)根据量子力学的全同性原理、多体全同粒子波函数有对称和反对称之分.掌握玻色子体系多体波函数取交换对称形式,费米子体系取交换反对称形式,以及费米子服从泡利不相容原理. (6)理解在自旋与轨道相互作用可以忽略时,体系波函数可写为空间部分和自旋部分乘积形式.对于两电子体系则有自旋单重态和三重态之分.前者自旋波函数反对称,空间波函数对称;后者自旋波函数对称,空间波函数反对称. (7)作为一个具体的实例:了解氦原子能谱有正氦和仲氦之分的物理机制. 教材:《量子力学教程》(周世勋)展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




量子力学周世勋习题解答第四章.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/7434720.html