分享
分销 收藏 举报 申诉 / 7
播放页_导航下方通栏广告

类型牛顿迭代的收敛证明.doc

  • 上传人:xrp****65
  • 文档编号:7219482
  • 上传时间:2024-12-28
  • 格式:DOC
  • 页数:7
  • 大小:273KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    牛顿 收敛 证明
    资源描述:
    6 《计算方法》课程论文 黑 龙 江 科 技 学 院 (计算机与信息工程学院) 《计算方法》课程论文 牛顿迭代的收敛条件 班 级: 计算机控制07-3班 学 号: 29号 姓 名: 韩静 授课教师: 才智 论文成绩: 2009年5月 牛顿迭代的收敛条件 韩静 (黑龙江科技学院 计算机与信息工程学院) 摘 要:给出了牛顿迭代的广义收敛条件,并在Banach空间中建立相应的收敛定理。 牛顿迭代法x0采取的在此基础上,找到超过x0附近的方程的分步迭代法,以便找到更接近的根源近似方程。如何利用函数f ( x )的泰勒级数前面的一些方程找到函数f ( x ) = 0的根。牛顿迭代方程的根的重要方法之一,其最大的优点是在方程f ( x ) = 0有一个单一的广场附近的收敛性,该方法还可以用来重新排序方程根。 关键词:牛顿迭代;优序列;收敛性 On The Convergence Condition Of Newton`s Method Han Jing (Computer & Information Engineering Department., Heilongjiang Institute of Science & Technology) Abstract: A generalized convergence condition for Newtion`s method is given and the corrsponding convergence theorem is established. Newton iterative method is based on differential, differential is used to replace the straight-line curve, because of irregular curves, then we study a straight line instead of curves, the remaining difference is infinitesimal high-end, high-end if it is infinitesimal, Newton iteration x0 are taken, the On this basis, to find more than the near x0 of the equation with the step-by-step iteration in order to find closer to the root of the approximate equations with. Ways to use function f (x) the Taylor series in front of a number of equations to find f (x) = 0 root. Newton iteration equations are the root for one of the important ways, its greatest strength is in the equation f (x) = 0 has a single square of near convergence, and the method can also be used to re-order equation root. Key words: Newton`s method ; majorizing principle ; convergence 1 引言 设f: 是Banach空间E的某个凸区域D到同空间F的非线性算子,众所周知,牛顿迭代 方程最有效的方法 (1(( 1sshi 是求解下述方程最有效的方法 Kantorovich L 曾用优函数分析了牛顿迭代法的收敛性。有关这方面的文献还有。但其中大部分的收敛条件都是:f的一阶导数满足Lipschitz条件或者二阶导数在区域D上一致有界。这样的条件通常称为Kantorovich类型的收敛条件。然而,在很多情况下,由于函数非解析而不能满足条件,为此,有人提出了收敛的弱条件。所谓弱条件指:函数的二阶导数在区域内将受到某一相关函数的约束,而不是某一常数。 2 预备知识 为了建立Banach空间上牛顿迭代的收敛定理,我们先来分析牛顿迭代对实函数的收敛性。实事上,它就是牛顿迭代的优函数,定义如下: 引理1 证明引理1 如果定义 我们用数学归纳法证明 显然,当N=0时成立,设对某个N时,上式成立,由引理1可得和,因此有意义且,由归纳证明可知序列{tn}收敛的。 引理3 在前面的假设条件下有: 3 主要定理 4 比较 参考文献: 1 Kysovskii L.The majorant principle and newton`s method. Dok Akod Nauk SSSR,1951,8(76):17~20 2 Altman M. A geneeral majorant principle for funcitonal equations. Bull Acad Polon Sci Ser Math Astronom Phys,1961(9):745~750 3 Gragg W B,Tapia: R A.Optimal error bounds for the Newton-Kantorovich theorem.SIAM J Numer Anal,1974(11):10~13 4 Ortega J .The Newton-Kantorovich theorem.Amer Math Monthly,1968(75):658~660 5 徐翠薇 计算方法引论[M].北京:高等教育出版社,1997. 6 数值分析
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:牛顿迭代的收敛证明.doc
    链接地址:https://www.zixin.com.cn/doc/7219482.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork