《有理数》全章复习与巩固(基础)知识讲解.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有理数 复习 巩固 基础 知识 讲解
- 资源描述:
-
《有理数》全章复习与巩固(基础) 撰稿:张保平 【学习目标】 1.理解正负数的意义,掌握有理数的概念. 2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3.学会借助数轴来理解绝对值、有理数比较大小等相关知识. 4. 理解科学记数法,有效数字及近似数的相关概念并能灵活应用; 5. 体会数学知识中体现的一些数学思想. 【知识网络】 源:学#科#网Z#X#X#K] 【要点梳理】 要点一、有理数的相关概念 1.有理数的分类: (1)按定义分类: (2)按性质分类: 要点诠释:(1)用正数、负数表示相反意义的量; (2)有理数“0”的作用: 作用 举例 表示数的性质 0是自然数、是有理数 表示没有 3个苹果用+3表示,没有苹果用0表示 表示某种状态 表示冰点 表示正数与负数的界点 0非正非负,是一个中性数 2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如. (2)在数轴上,右边的点所对应的数总比左边的点所对应的数大. 3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0. 要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可. (3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值: (1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作. (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离. 要点二、有理数的运算 1 .法则: (1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) . (3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0. (4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用: (1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3, -[+(-3)]=3. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , . 2.运算律: (1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab)c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较 比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法 1. 科学记数法:把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.例如:200 000=. 2.有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字.如: 0.000 27有两个有效数字:2,7. 注意:万=,亿=10 【典型例题】 类型一、有理数相关概念 1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________. 【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1 【解析】根据定义,把符合条件的有理数写全. 【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三: 【高清课堂:有理数专题复习 357133 概念的理解与应用】 【变式】(1)的倒数是 ;的相反数是 ;的绝对值是 . -(-8)的相反数是 ;的相反数的倒数是_____ (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 . (3) 上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min. (4) 若a、b互为相反数,c、d互为倒数,则____ . (5) 近似数0.4062精确到 位,有 个有效数字; 近似数 5.47×105精确到 位,有 个有效数字; 近似数3.5万精确到 位,有 个有效数字. (6) 3.4030×105保留两个有效数字是 ,精确到千位是 . 【答案】(1); ; ;-8;2 (2)降价5.8元,70.2 元;(3);(4)3; (5)万分,4;千,3;千,2 (6)3.4×105,3.40×105 2. 如果(x-2)2+|y-3|=0,那么(2x-y)2005的值为( ). A.1 B.-1 C.22006 D.32005 【思路点拨】利用非负数的性质,求出的值再代入计算. 【答案】A 【解析】 因为(x-2)2,|y-3|都是非负数,且(x-2)2+|y-3|=0, 所以由非负数的性质先求出x=2, y =3的值,代入得: (2x-y)2005=12005=1. 【总结升华】偶次方与绝对值都具有非负性. 3.在下列两数之间填上适当的不等号: ________. 【思路点拨】根据“a-b>0,a-b=0,a-b<0分别得到a>b,a=b,a<b”来比较两数的大小. 【答案】 < 【解析】法一:作差法 由于,所以 法二:倒数比较法:因为 所以 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用. 举一反三: 【变式】比较大小:(1)________0.001; (2)________-0.68 【答案】(1)< (2)> 类型二、有理数的运算 【高清课堂:有理数专题复习 357133 有理数的混合运算】 4.(1) (2) (4) (5) 【答案与解析】(1)原式 (2)原式 (3)原式 (4)原式 (5) 【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac;逆向应用分配律:ab+ac=a(b+c)等. 举一反三: 【变式】计算:(1) ; (2) 【答案】(1) (2)原式 类型三、数学思想在本章中的应用 5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系. A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a (2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值. (3)转化思想:计算: 【答案与解析】(1)将-a在数轴上标出,如图所示, 得到a<1<-a,所以大小关系为:a<1<-a. 所以正确选项为:D (2)因为| x|=5,所以x为-5或5 因为|y|=3,所以y为3或-3. 当x=5,y=3时,x-y=5-3=2 当x=5,y=-3时,x-y=5-(-3)=8 当x=-5,y=3时,x-y=-5-3=-8 当x=-5,y=-3时,x-y=-5-(-3)=-2 故(x-y)的值为±2或±8 (3)原式= 【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”. 举一反三: 【变式】若a是有理数,|a|-a能不能是负数?为什么? 【答案】 当a>0时,|a|-a=a-a=0; 当a=0时,|a|-a=0-0=0; 当a<0时,|a|-a=-a-a=-2a>0. 所以,对于任何有理数a,|a|-a都不会是负数. 类型四、规律探索 6. (2009·山东聊城)将1,,,,,,…,按一定规律排列如下: 请你写出第20行从左至右第10个数是________. 【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律. 【答案】 【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是,以此类推向前10个,则得到第20行第10个数是. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




《有理数》全章复习与巩固(基础)知识讲解.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/6795879.html