《轴对称图形》.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称图形 轴对称 图形
- 资源描述:
-
《轴对称图形》 案例简介 (至少选择一个教学环节进行介绍,也可以多选) 教学环节 教学描述 技术应用 实施效果 课堂导入 一、猜一猜——情景导入 1:欣赏录像。(课件出示春天到北京旅游的景象) 一、创设情境,激发兴趣 “爱美之心,人皆有之”,追求美、崇尚美是人之天性,儿童亦然。整堂课以欣赏美为线索展开教学,本课就创设了这样一个情景动画:“碧草青青花盛开,彩蝶双双久徘徊”,在优美的小提琴协奏曲的渲染中,两只小企鹅到北京旅游,介绍沿途参观的很多著名景物(这些景物都是对称的),带领学生一起畅游了一番,学生在愉悦的气氛中开始观察优美的画面,仿佛身临其境,领略了对称物体之美。 以学生身边的事物为媒介,使教材内容从具体到抽象,从感性到理性,循序渐进地指导学生认识生活中轴对称性质的事物,使学生进一步深入地认识几何平面图形的本质特征。在这个过程中,教师注意到图片的颜色,在教具和课件制作中采用色彩鲜明的颜色,使学生感受到颜色的美,物体的美丽,教师创设了一个这样美的情境,激发了学生的学习兴趣,使学生真切感受到数学的美,来源于生活,来源于身边,体验到在数学中美的教育。 难点讲授 二、观察、操作——探究特征 1、观察,初步感知 (1)认识对称 观察照片,你能发现它们有什么特点吗? 生:它的两边都是一模一样的。 那其它物体有没有两边也是一模一样的呢? (2)揭示对称 像这样物体的两边是一模一样的,我们就说这个物体它是对称的。那这些物体它们都是对称的。 (3)扩展认识 在生活中你还见过哪些物体也是对称的呢?(和你的同桌说一说。 (同桌之间自由说,全班交流) 2、操作,体会特征 (1)从物体到图形的认识 把这些对称的物体画下来,得到下面的图形 继续观察,这几个图形有什么特点呢? 任选一个图形,在小组内合作,尝试能用什么方法来验证它 们是对称的呢? (学生操作,教师巡视,选择不同的实验方法。) 交流反馈。演示折纸过程:对折后两边是对称的 板贴:对折 师:那再请同学们观察一下,你把图形对折后发现了什么呢?在小组里说一说。(学生小组交流) 生:它们对折后两边是对称(一模一样)的。 师:那其他图形也是这样的吗?师加以补充:像这样,对折后折痕两边的部分完全一样(对称),称为完全重合。板贴:完全重合 师:为了使大家看得更清楚,我们请电脑老师来演示一下你发现了什么?(学生操作,小组交流述说) 师:这些图形它们有什么共同的特征呢?(点名回答) 生:它们对折后两边是能完全重合的。 小结:像这样,对折后两边能完全重合的图形是轴对称图形!(板帖:轴对称图形的概念) 师:今天我们就要来学习轴对称图形(板贴课题:轴对称图形) 师:这些图形都是(学生讲轴对称图形),那谁来说说这三张图形为什么是轴对称图形呢? 生:(点名回答)它们对折后能完全重合,所以是轴对称图形。 师:如果把刚才对折后的图形打开来看看,还发现什么呀? 生:一条折痕。 师:有一条折痕。这条折痕就是这个图形的对称轴。(电脑演示对称轴)(板贴:对称轴) 师:你能找出另外两张图形中的对称轴吗?相互说一说。(同桌交流) 师:(小结)现在同学们知道什么图形才是轴对称图形吗?在小组里交流一下(小组交流) 师课件点击放大剪纸 (课件点击返回)图。 (课件出示) (电脑出示按天安门、飞机、奖杯、蝴蝶等实物画下来的图形) 。(电脑演示:2个对折完全重合的过程)。请大家把其余的两个图形再折一折。 本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折,剪一剪,画一画,等一系列活动,让学生多种感官参与教学活动。在新授教学时并没有采用传统的灌输手段,而是把学生看作是课堂的主角,让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就引入“完全重合”,让学生反复地操作体会,再配合课件的动画演示,初步感知什么是“完全重合”;最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示“轴对称图形”的概念,让学生了解这些图形的基本特征,形成感性的认识。 理解训练 3、识别,加深体验——动手操作 师:同学们的表现真不错。今天,一些图形娃娃也非常高兴来参加我们的活动,但它们有个要求要请同学们运用这节课所学的知识找出哪些是轴对称图形?大家能满足图形娃娃的要求吗?组长拿出信封中的图形,选择自己喜欢的图形动手折一折,然后在小组里说一说你选的是轴对称图形吗?为什么?(小组合作操作) 师:(点名回答)三角形是轴对称图形吗?为什么? (点名回答,学生投影展示) 师:那平行四边形是轴对称图形吗?为什么 (点名回答并投影展示) ………… 师:(小结)通过刚才的操作,同学们知道怎样的图形才是轴对称图形吗? 生:(请2—3名学生说) 4、训练,巩固特征 师:看来同学们学得真棒啊!下面吴老师呢就要来考考大家了。 (1)师:这是我们生活中常会看到的一些图形,你能一眼就看出它们中哪些是轴对称图形吗?(直接提问, (2)师:同学们知道吗,我们学的英文字母,有很多也是轴对称图形呢!就让我们在抢答游戏中把它们找出来吧,看谁的反映最快。(教师举字母卡片,学生抢答) (3)师:(小结)为什么N、S不是轴对称图形呀? 生:(上来动手折一折)因为它们对折后不会完全重合。 师:所以轴对称图形一定要对折后能完全重合。(学生一起说) (电脑出示P57“试一试”) (课件出示第58页第1题) 课件演示1—2个是轴对称图形,对有疑问的再演示) 在整个教学的过程中,始终以学生动手操作实践为主导,在巩固练习中也安 排了一些学生操作的活动,让学生在操作过程中体会“完全重合”和“不完全重合”的区别,为辨别是否轴对称图形奠定了基础。在最后的制作轴对称图形时完全放手让学生去操作,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。 总结复习 四、看一看——拓展延伸 师:轴对称图形以其特有的对称美,给人们带来了一种和谐的美感,古今中外,有许多著名的建筑也是对称的,让我们一起来看看这些对称的建筑,感受它们的奇妙和美丽! 师:生活中的对称现象还有很多很多,有兴趣的同学课后还可以到雅虎、百度网站去查阅一些有关轴对称图形的资料,和同学交流一下。 (电脑配乐欣赏著名的建筑图片) 本堂课的结尾让学生欣赏古今中外著名的对称建筑,配上古典的轻音乐,拉近了生活与数学的距离。古建筑又是一种艺术,渗透在数学学科中,既是学习数学的好材料,又是渗透民族文化的好题材,选择切合教学符合儿童学习规律的素材,需要一些有民族特色的题材,如本课例中的背景音乐、古建筑、中国剪纸等就是在这方面作出的有益尝试和探索。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




《轴对称图形》.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/6660463.html