分享
分销 收藏 举报 申诉 / 5
播放页_导航下方通栏广告

类型竖直平面内圆周运动的临界问题及应用.doc

  • 上传人:xrp****65
  • 文档编号:6129494
  • 上传时间:2024-11-28
  • 格式:DOC
  • 页数:5
  • 大小:1.10MB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    竖直 平面 圆周运动 临界 问题 应用
    资源描述:
    高中物理巧学妙解王 第一章 高频热点剖析 五、竖直平面内的圆周运动 版权所有 河南省睢县高级中学 李仲旭 电话:13598362767 邮箱:lizhx.888@ ---22--- 竖直平面内的圆周运动是典型的变速运动,高中阶段只分析通过最高点和最低点的情况,经常考查临界状态,其问题可分为以下两种模型. 一、两种模型 模型1:“轻绳类” 图1 图2 绳对小球只能产生沿绳收缩方向的拉力(圆圈轨道问题可归结为轻绳类),即只能沿某一个方向给物体力的作用,如图1、图2所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: (1)临界条件:在最高点,绳子(或圆圈轨道)对小球没有力的作用, (2)小球能通过最高点的条件:,当时绳对球产生拉力,圆圈轨道对球产生向下的压力. (3)小球不能过最高点的条件:,实际上球还没到最高点就脱离了圆圈轨道,而做斜抛运动. 模型2:“轻杆类” 图3 图4 有物体支撑的小球在竖直平面内做圆周运动过最高点的情况,如图3所示,(小球在圆环轨道内做圆周运动的情况类似“轻杆类”, 如图4所示,): (1)临界条件:由于硬杆和管壁的支撑作用,小球恰能到达最高点的临界速度 (2)小球过最高点时,轻杆对小球的弹力情况: ①当时,轻杆对小球有竖直向上的支持力,其大小等于小球的重力,即; ②当时,因,则. 轻杆对小球的支持力竖直向上,其大小随速度的增大而减小,其取值范围是. 图5 ③当时,; ④当时,则,即, 杆对小球有指向圆心的拉力,其大小随速度的增大而增大,注意 杆与绳不同,在最高点,杆对球既能产生拉力,也能对球产生支持力,还可对球的作用力为零. 小结 如果小球带电,且空间存在电磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力作为向心力,此时临界速度≠(应根据具体情况具体分析).另外,若在月球上做圆周运动则可将上述的换成,若在其他天体上则把换成. 二、两种模型的应用 【例1】如图5所示,质量为的小球从光滑的斜面轨道的点由静止下滑,若小球恰能通过半径为的竖直圆形轨道的最高点而做圆周运动,问点的高度至少应为多少? 图6 【解析】此题属于“轻绳类”,其中“恰能”是隐含条件,即小球在最高点的临界速度是,根据机械能守恒定律得 把代入上式得:. 【例2】如图6所示,在竖直向下的匀强电场中,一个带负电、质量为且重力大于所受电场力的小球,从光滑的斜面轨道的点由静止下滑,若小球恰能通过半径为的竖直圆形轨道的最高点而做圆周运动,问点的高度至少应为多少? 【解析】此题属于“轻杆类”,带电小球在圆形轨道的最高点受到三个力作用:电场力,方向竖直向上;重力;弹力,方向竖直向下.由向心力公式,有 要使小球恰能通过圆形轨道的最高点而做圆周运动,说明小球此时处于临界状态,其速率为临界速度,临界条件是.由此可列出小球的临界状态方程为 ① 根据动能定理,有 ② 解之得: 说明 把②式中的换成,较容易求出 【例3】如图6所示,在竖直向下的匀强电场中,一个带正电、质量为且重力大于所受电场力的小球,从光滑的斜面轨道的点由静止下滑,若小球恰能通过半径为的竖直圆形轨道的最高点而做圆周运动,问点的高度至少应为多少? 【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使带电小球恰能通过圆形轨道的最高点而做圆周运动,说明小球此时处于临界状态,其速率为临界速度,临界条件是.由此可列出小球的临界状态方程为: ① 根据动能定理,有 ② 由上述二式解得: 小结 上述两题条件虽然不同,但结果相同,为什么?因为电场力与重力做功具有相同的特点,重力做功仅与初、末位置的高度差有关;在匀强电场中,电场力做功也仅与沿电场力方向的距离差有关.我们不妨可以这样认为,例2中的“等效重力加速度”比例1中的重力加速度减小,例3中的“等效重力加速度”比例1中的重力加速度增大. 例2中,; 例3中,. 把代入各自对应的式子,结果、分别都约去了,故. 【例4】如图7所示,一个带正电、质量为的电荷, 图7 从光滑的斜面轨道的点由静止下滑,若小球恰能通过半径为的竖直圆形轨道的最高点(圆弧左半部分加上垂直纸面向外的匀强磁场),问点的高度至少应为多少? 【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使小球恰能通过圆形轨道的最高点,说明小球此时处于临界状态,其速率为临界速率,临界条件是,由此可列出小球的临界状态方程为 ① , ② 由①式可得: 因只能取正值,即 则 【例5】如图8所示,在竖直向下的均匀电场中,一个带正电、质量为的电荷,从光滑的斜面轨道的点由静止下滑,若小球恰能通过半径为的竖直圆形轨道的最高点(圆弧左半部分加上垂直纸面向外的匀强磁场),问点的高度至少应为多少? 图 8 【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使小球恰能通过圆形轨道的最高点,说明小球此时处于临界状态,其速率为临界速率,临界条件是,由此可列出小球的临界状态方程为 ① ② 由①式可得: 因只能取正值,即 则 小结 小球受到的洛伦兹力与轨道的弹力有相同的特点,即都与速度的方向垂直,它们对小球都不做功,而临界条件是. 图 9 【例6】如图9所示,为竖直平面内的光滑绝缘轨道,其中段是水平的,段为半径的半圆,两段轨道相切于点,整个轨道处在竖直向下的匀强电场中,场强大小.一不带电的绝缘小球甲,以速度沿水平轨道向右运动,与静止在点带正电的小球乙发生弹性碰撞。已知甲、乙两球的质量均为,乙所带电荷量,取.(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移) (1)甲乙两球碰撞后,乙恰能通过轨道的最高点,求乙在轨道上的首次落点到点的距离; (2)在满足(1)的条件下。求的甲的速度; (3)若甲仍以速度向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到点的距离范围. 【解析】(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点速度为,乙离开点到达水平轨道的时间为,乙的落点到点的距离为,则 ① ② ③ 联立①②③得 (2)设碰撞后甲、乙的速度分别为、,根据动量守恒定律和机械能守恒定律有 ④ ⑤ 联立④⑤得 ⑥ 由动能定理,得 ⑦ 联立①⑥⑦得 ⑧ (3)设甲的质量为,碰撞后甲、乙的速度分别为,根据动量守恒定律和机械能守恒定律有 ⑨ ⑩ 联立⑨⑩得 由和,可得 设乙球过点时速度为,由动能定理得 联立⑧得 设乙在水平轨道上的落点距点的距离,有 图 10 联立②得: 【例7】如图10所示,杆长为,一端固定一质量为的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动.求: (1)小球在最高点的速度为多少时,才能使杆和小球的作用力为零? (2)小球在最高点时,杆对小球的作用力为拉力和推力时的临界速度分别是多少? (3)若,,,则在最高点和最低点,杆对小球的作用力多大? 【解析】此题属于“轻杆类”.若杆和小球之间无相互作用力,那么小球做圆周运动的向心力仅由重力提供,根据牛顿第二定律,有: 解得 (2)若小球在最高点时,受拉力,受力如图11所示,由牛顿第二定律,有: 图11 图12 解得 若小球在最高点时,受推力,受力如图12所示,由牛顿第二定律,有: 解得: 可见是杆对小球的作用力在推力和拉力之间突变的临界速度. (3)杆长时,临界速度, ,杆对小球有推力,有,则.由至只有重力做功,机械能守恒.设点所处水平面为参考平面,则, 解得. 在最低点,小球受拉力,由 解得. 【例8】如图13所示,光滑的圆管轨道部分平直,部分是处于竖直平面内半径为的半圆,圆管截面半径,有质量为、半径比略小的光滑小球以水平初速度度射入圆管. (1)若要小球能从端出来,初速多大? (2)在小球从端出来瞬间,对管壁压力有哪几种典型情况,初速度各应满足什么条件? 图13 【解析】本题综合考查了竖直平面内圆周运动临界问题;属于“轻杆类”. (1)小球恰好能到达最高点的条件是,由机械能守恒,初速度应满足:,即. 要使小球能从端出来,需,所以入射速度. (2)在小球从端出来瞬间,对管壁压力有以三种典型情况: ①刚好对管壁无压力,此时重力恰好充当向心力,即 . 由机械能守恒定律,知 联立解得: ②对下管壁有压力,应有,相应的入射速度应满足. ③对上管壁有压力,此时应有,相应的入射速度应满足 小结 本题中的小球不能做匀速圆周运动,它的合力除最高点与最低点过圆心外,其他条件下均不过圆心,因而在一般位置处,它具有切向加速度. 图 14 【例9】如图14所示,一内壁光滑的环形细圆管位于竖直平面内,环的半径(比细管的半径大得多),在圆管中有两个直径与细管内径相同的小球,质量分别为,沿环形管顺时针运动,当球运动到最低点时,速度为,球恰到最高点,若要此时圆管的合力为零,的速度为多大? 【解析】本题综合考察了竖直平面内圆周运动临界问题的分析,属于“轻杆类”.在最低点对球进行受力分析,如图15所示,应用牛顿第二定律有 图15 图16 由牛顿第三定律,球对管有向下的压力,根据题意,即球对对管有向上的压力,球受力情况,如图16所示,由牛顿第三定律,管对球有向下的压力,,对球应用牛顿第二定律,有:,由于 联立可得 三、小球在凸、凹半球上运动 如图17所示,小球在凸半球上最高点运动时: (1)当,小球不会脱离凸半球且能通过凸半球的最高点. (2)当,因轨道对小球不能产生弹力,故此时小球将刚好脱离轨道做平抛运动. 图17 图18 图19 (3)当,小球已脱离凸半球最高点做平抛运动. 如图18所示,小球若通过凹半球的最低点时速度只要即可. 由以上分析可知,通过凸(或凹)半球最高点(或最低点)的临界条件是小球速度(或). 【例10】如图19所示,汽车质量为,以不变速率通过凸形路面,路面半径为,若汽车安全行驶,则汽车不脱离最高点的临界速度为多少?若汽车达到临界速度时将做何种运动?水平运动位移为多少? 【解析】(1)此题属于“轻绳类”,即轨道只能沿某一方向给物体作用力,临界条件为汽车对轨道压力,则汽车不脱离最高点的临界速度为,则有:,可得; (2)当时,汽车在轨道最高点仅受重力作用,且有初速度,故做平抛运动,则 ,,可得:. 图 20 【例11】小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞离水平距离后落地,如图20所示.已知握绳的手离地面高度为,手与球之间的绳长为,重力加速度为.忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小和球落地时的速度大小. (2)问绳能承受的最大拉力多大? (3)改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少? 【解析】(1)设绳断后球飞行时间为,由平抛运动规律,有:竖直方向 水平方向 ,得: 由机械能守恒定律,有:,得: (2)设绳能承受的最大拉力为,这也是球受到绳的最大拉力大小,球做圆周运动的半径为 由向心力公式,有,解得 (3)设绳长为,绳断时球的速度大小为,绳承受的最大拉力不变, 有,得 绳断后球做平抛运动,竖直位移为,水平位移为,时间为,有:, 得:, 当时,有极大值 总结 竖直平面内圆周运动两种模型的临界问题,其关键是分清属于“轻绳”类还是“轻杆”类,“轻绳”只能对物体产生沿绳收缩方向的拉力,在最高点对物体拉力为零是临界条件,即;在最高点,“轻杆”对物体既可以产生拉力,也可以产生支持力,还可以对物体的作用力为零,杆与物体之间的作用力为零是临界条件,即. 在处理带电小球在竖直平面内做圆周运动时,一定要区分“几何最高点”与“力学最高点”不一定是对应的,上面总结的“轻绳类"和“轻杆类”规律必须是“力学最高点”.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:竖直平面内圆周运动的临界问题及应用.doc
    链接地址:https://www.zixin.com.cn/doc/6129494.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork