分享
分销 收藏 举报 申诉 / 7
播放页_导航下方通栏广告

类型三角形内角和定理的证明教学设计.doc

  • 上传人:仙人****88
  • 文档编号:5499745
  • 上传时间:2024-11-11
  • 格式:DOC
  • 页数:7
  • 大小:79.01KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    三角形 内角 定理 证明 教学 设计
    资源描述:
    三角形内角和定理的证明教学设计 南京市大厂中学 袁新兵 蔡祝华 一、 教材与学生现实的分析 1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。 2、三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。 3、学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,而且也渗透了三角形的内角和是180°的证明,它的证明借助了平角定义,平行线的性质。用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。辅助线的作法是学生在几何证明过程中第一次接触,只要教师设置恰当的问题情境,学生再由实验操作、观察、抽象出几何图形,用自主探索的方式是可发完成的,并且这样的过程 可以更好地发展他们的创造能力和实验能力。 从本节开始训练学生将命题翻译为几何符号语言,写出已知、求证,学会分析命题的证明思路,对培养学生的思维能力和推理能力将起到重要的作用。 教学目标 教学知识点 三角形内角和定理的证明。 能力训练要求 掌握三角形内角和定理,并初步学会利用辅助线证明,同时培养学生观察、猜想、和论证能力。 情感与价值观要求 通过新颖、有趣的实际问题,来激发学生的求知欲。 教学重点 三角形内角和定理的证明思路及应用。 教学难点 三角形内角和定理的证明方法。 教学方法 实验法,讨论法。 教学过程 设计说明 创设问题情境 我们在七年级曾经把一个三角形的三个内角撕下来拼在一起得到一个平角,由此得到三角形的内角和是180°。 教师指出:这只是实验得出的命题,不能当做定理,只有经过严格的几何证明,证明命题的正确性,才能作为几何定理,今后,在几何里,常采用这种方法得到新知识。 那么如何证明此命题是真命题呢?能否用学过的旧知识作平行线,利用平行线的性质来证明呢? 从学过的知识引入符合学生的认知规律,且小学已知三角形三个内角和是180°。 学生自主探究 学生回忆证明一个命题的步骤: ①画图 ②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。 ③分析、探究证明方法。 有本章前面几节作为基础,学生有能力画图,写已知,求证。 创设问题情境 教师引导:要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢? 学生思考与180°有关的角后回答,可拼成:①平角,②两平行线间的同旁内角。教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?下面同学们利用准备好的三角形纸片拼一拼,画一画。 联想前面撕角拼角的方法,学生能想到。 让学生体会转化的数学思想方法,把新知识化为旧知识。 学生自主探究 学生通过自主探究,可以得出以下几种辅助线的作法: ① 如图1,延长BC得到一平角∠BCD,然后以CA为一边,在△ABC的外部画∠1=∠A。 ② 如图1,延长BC,过C作CE∥AB ③ 如图2,过A作DE∥AB ④ 如图3,过C作CD∥AB。 A B C D E 1 图1 A B C 图2 D E A B C 图3 D A B C 图4 E F P 学生通过观察分析、归纳,使思维达到高潮,由感受性认识上升到理性认识。 请不同画法的学生板演,并口述画图方法,叙述不恰当时,同学可改正, 画法4,部分学生可能想到。 ⑤如图4,在BC边上任取一点P,作PD∥AB,PE∥AC。 学生可能还有其它画法。 辨析与研讨 通过以上分析、研究,让不同做法的学生讲解依据。 ① 根据平行线的判定及性质,利用同位角把三角形三内角转化为一个平角。 ② 根据平行线的性质,利用内错角和同位角,把三角形三内角转化为一个平角。 ③ 根据平行线的性质,利用内错角,把三角形三内角转化为一个平角。 ④ 根据平行线的性质,利用内错角把三角形三内角转化为两平行线间的同旁内角。 ⑤ 根据平行线的性质,利用内错角、同位角或同旁内角把三角形三内角转化为一个平角。 进一步搞清作辅助线的思路和合乎逻辑的分析方法,充分让学生表述自己的观点,这个过程对培养学生的能力极为重要,依据不充分,学生可争论。 学生自主探究 根据以上几种辅助线的作法,选择一种,师生合作,写出示范性证明过程。其余由学生自主完成证明过程。 目的是培养学生的思维能力和推理能力。 反思与评价 1、 弄清证明命题的必要性及步骤。 2、 如何将文字语言转化为几何语言。 3、 三角形内角和定理的证明是借助于什么获得(实验、观察、添加辅平行线),平行线是以后几何中常作的辅助线。 4、 添辅助线的技巧:通过平行线把三角形三个内角转化为平角或两平行线间的同旁内角,即把新知识转化为旧知识去解决。 引导学生进行总结和概括,培养学生的归纳概括能力。 例题讲解 例1 △ABC中,∠C=∠ABC=2∠A,BD是AC边上的高, 如图,求∠DBC的度数。 A B C D 学生自主探索,教师巡视、诊断,不同解法的学生板演,学生辨析。 使学生灵活应用三角形内角和定理。用代数方法解决几何问题(方程思想)是重要的方法。 思维拓展 练习 1、 已知△ABC中,DE∥BC,∠A=60°, ∠C=70°, 求证:∠ADE=50° 进一步使学生灵活应用三角形内角和定理。 2、 △ABC中,∠A=n°,∠ABC、∠ACB的平分线交于点O, 求证:∠BOC=90°+ n° 课后思考 把三个内角集中在一起有很多种方法,下面提供其中的两种,课后写出证明方法 拓展学生的思维。 小结 我们证明了一个很有用的三角形内角和定理,证明思想是,运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:三角形内角和定理的证明教学设计.doc
    链接地址:https://www.zixin.com.cn/doc/5499745.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork