磁感应强度B与磁场强度H的区别_联系与物理意义.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 感应 强度 磁场强度 区别 联系 物理 意义
- 资源描述:
-
磁感应强度B与磁场强度H的区别,联系与物理意义 从前学普物的时候,提到了磁感应强度B与磁场强度H这两个概念。因为一直疏于思考,没有仔细想过两者的异同。教材里说,H是人为引入的定义,没有物理意义,也没有多想,全盘接受。至于教材提到的关于H与B谁更基本的争论,我只记住了这个事实,并没有想为什么,很是惭愧,更没有想过为什么这么称呼它们。过去的一年里,逐渐理解固体里的故事,现在回想起来,才理顺清楚它们的意义。 简言之,H是外场,B总场,它们单位不同仅仅是由于来源不同:前者通过电流的磁效应得到,后者通过带电粒子在磁场中的运动定义。B比H更加基本,是由于电流本身就是带电粒子的运动产生,所以粒子模型比电流模型更加基本。 想我们处于19世纪,暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”的大小。 1.H来源于Ampere定律。Ampere通做电流做实验,发现长直导线外,到导线距离相等的点,“磁场”大小相同;距离不同的点,“磁场”强度随着距离成反比。这里所谓的“磁场”大小是通过小磁针扭转力矩等力学方式得到的。这样,通过力学测量和已有的电流强度的定义,即可定义一个物理量H,满足2*pi*R*H=I。推广后就是Ampere环路定律。 此时无需真空磁导率μ0,因为只要知道电流I就能定义H这个物理量。 2.B来源于带电粒子的受力。对于一定速度的粒子,加上H磁场,通过轨道测量以及牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。 3.磁导率如何引入。这样,H是电流外加给的磁场,通过粒子受力,直接定义一个粒子感受到的磁场,叫它B,为了使得F= qvⅹB成立。即,外施H场,粒子运动感受到的却是B场,这就可以定义磁导率miu =B/H,“率”即比例的意思。磁导率,就是粒子运动(受力)与外界磁的比例,描述前者随着后者的响应。磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零(不导磁),那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎。 磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,粒子处于真空中的时候,这个miu是一个与任何物理量都无关的常数,这正是真空磁导率。 4.小结。H与B单位的不同,仅仅是由于最开始研究力学用的单位,和开始研究电荷、电流的单位完全独立,导致的一种单位换算。H从I得来,B从F得来,所以看到的是“施H”与“受B”的关系。实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以我们看到的μ0是个漂亮的严格值,而真空介电常数,另一种线性响应确实是一个长长的实验数字。 5.方便的高斯制。既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在为了简化,将二者化为相同单位:B=H;这样我们就得到了电磁学里更常用的高斯单位制。如果需要换算,随时添加磁导率即可。 6.磁化。刚才只考虑单粒子对于磁场的响应。进一步研究介质对于磁场的响应,从石墨烯,到金属玻璃。逻辑如下: 现在通过电流I,把磁场H加到某种材料当中,在材料中的某个带电粒子受到磁场的响应,当然是与这个点的总磁场有关。外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,同样,希望一块材料里面有更多额外磁场,就说把它“磁化”。 7.磁化率。我们把产生的额外磁场大小叫做M。与磁导率一样,为了研究这个额外的感生磁场M与外加场H的关系,我们定义磁化率χ=M/H. 磁化率大,说明同样大的外磁场,能产生更多的内在额外磁场;磁化率为很小,说即使外加磁场很大,里面的材料也“懒得理它”,只有微弱的响应。这里要注意两 点。这是你不难发现,这样定义的磁化率也是线性响应(输出正比于输入)的过程。此外,磁化率可正可负。所谓正磁化率χ>0,就是说产生的内部磁场M方向与外加磁场H相同(由自旋导致的Pauli顺磁);负磁化率χ<0,就是材料内部由于H产生的额外磁场M和外场H方向相反(由轨道导致的Landau抗磁)。对于自由电子气,Pauli顺磁是Landau抗磁的三倍,这样看来,所有材料都该是顺磁。实际上,由于介质中的电子的轨道运动的惯性质量是有效质量,从而抗磁材料也得以存在。如果是第一类超导体,它所谓的完全抗磁性,就是说外加场H,总有感生的内场M,把外场抵消,使得超导体内部磁场为零。直观看来好像磁场穿不进来一样。 这样,总场B在某点的值,应该是该处的外场值H,与H的感生下介质产生的额外场M在该点的值的和。写成B(r)=H(r)+M(r), r表示空间处某一点。实际上,如果使用高斯单位制,由于需要考虑了麦克斯韦方程电和磁的对称性,以及球面的立体角,式子是B(r)=H(r)+4πM(r),SI制下则是B=μ0[H(r)+M(r)]. 如果要进一步考虑场的传递有限速度以及由此导致的非定域性,式子还要复杂些,但无外乎时空的积分罢了。 8.H与B名称的起源。这个式子的正确解释是:总磁场等于外加磁场和感生的磁场(就叫它磁化)的矢量和。既然B表示总场,它已经考虑了感应产生的磁化M,就叫做B为磁感应强度;H来源于外场,就叫它磁场强度;M是H通过磁化过程感生的,就叫它磁化强度。注意这个式子是普遍的。在线性响应的额外前提下,我们有M=χH成立。 这样,H表示电流产生的外场(物理实验上,能够精密控制磁场的就是电流,所以电流产生的外场就简称为外场),B表示总场。它们都有物理意义。物理学家之所以争吵哪个物理量更加基本,也在于此。因为电流和电荷受力,分别产生了H和B,那么谁更加基本的确是个问题。后来电流的微观机制发现,原来电流本质也是载荷受力产生的漂移(注意这里是受电场力)。因此受力图像里的B就比电流得来的H更加基本了。无论如何,H已经被赋予了意义。 磁感应强度:又称磁通密度,单位体积/面积里的磁通量,用于描述磁场的能量的强度的物理量,是一个矢量,符号是B,单位是特(斯拉)(T)。 磁场强度,是在研究磁介质、推导有磁介质的安培环路定理时引入的辅助物理量,无物理意义,是一个矢量,符号是H,单位是按(培)/米(A/m)。 H=B/(真空磁导率)-M,B=(真空磁导率)*(1+相对磁导率)*H=(磁导率)*H 事实上,电场中也有电场强度E和点磁感应强度D。其中,E与B的地位相当。D=(电导率)*E 是磁体周围空间存在的特殊物质产生的特殊物质,没有磁场强度的具体概念!但它的大小应该是用磁场线疏密表示的!一般只会考磁感线的概念..说到磁场强度应该只有大小不包括方向 磁感应强度是矢量,它是磁场本身的性质 B=F/IL 还有就是电磁感应部分又叫磁通密度,B=Ф/s 表示单位面积磁感线条数 一般解题都是匀强磁场,这两者都可以用B表示。 磁感应强度 描述磁场的物理量,又叫磁通密度,是矢量,符号是B,单位是特(T)。磁场的特性是对运动电荷、电流有作用力,我们可根据这种作用来定义磁感应强度。 B在磁场中的地位是与电场强度E在电场中所处的地位相对应的。 磁场强度符号是H,是在研究磁介质时引入的一个辅助矢量,并无确切的物理意义, 磁感应强度,用来描述磁场的强度。就如同电场强度是描述电场强度的物理。 原本应以此类推称磁感应强度为磁场强度,然而,历史上早已用磁场强度定义了其他物理量,所以不称其为磁场强度,而改称为磁感应强度。 磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。由于磁场是电流或者说运动电荷引起的,而磁介质(除超导体以外不存在磁绝缘的概念,故一切物质均为磁介质)在磁场中发生的磁化对源磁场也有影响(场的迭加原理)。因此,磁场的强弱可以有两种表示方法: 在充满均匀磁介质的情况下,若包括介质因磁化而产生的磁场在内时,用磁感应强度B表示,其单位为特斯拉T,是一个基本物理量;单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁场时)则用磁场强度H表示,其单位为A/m2,是一个辅助物理量。 具体的,B决定了运动电荷所受到的洛仑兹力,因而,B的概念叫H更形象一些。在工程中,B也被称作磁通密度(单位Wb/m2)。在各向同性的磁介质中,B与H的比值即介质的绝对磁导率μ。 中学阶段不讲磁场强度 磁场强度矢量H是为了磁场的安培环路定理得到形式上简化而引入的辅助物理量。它的物理意义类似于电位移矢量D。从定义的操作方面来看,磁感应强度是完全只是考虑磁场对于电流元的作用,而不考虑这种作用是否受到磁场空间所在的介质的影响,这样磁感应强度就是同时由磁场的产生源与磁场空间所充满的介质来决定的。相反,磁场强度则完全只是反映磁场来源的属性,与磁介质没有关系。实际在前面已经说明,这两个概念在实际运用中各有其方便之处。 磁场强度 magnetic intensity 描述磁介质中磁场的一个辅助物理量。常用符号H表示,定义为H=(B/μo)-M式中B是磁感应强度;M是磁化强度;μo是真空磁导率。在线性各向同性磁介质中,M与H成正比,即M=xmH,xm是磁介质的磁化率。于是上式表为B=μo(1+xm)H=μoμrH式中μr=1+xm称为磁介质的相对磁导率,上式是表征介质磁化性质的介质方程。 磁介质磁化后产生的磁化电流改变了原来的磁场分布,引入辅助量H是为了使未知的磁化电流不显现在由H表述的磁场的安培环路定理之中。在认清磁性起源于电流之前,曾认为磁性起源于磁荷,并得到了与静电库仑定律相仿的磁库仑定律。由此,把单位磁荷所受磁力定义为H,认为H是描述磁场的基本物理量,并赋予其磁场强度的名称,沿用至今。 在国际单位制(SI)中,磁场强度H的单位是安培/米(A/m)。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




磁感应强度B与磁场强度H的区别_联系与物理意义.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/5486471.html