天津市第一中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津市 第一 中学 2020 中考 提前 自主 招生 数学模拟 试卷 解析
- 资源描述:
-
中学自主招生数学试卷 一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.在实数0,﹣,,|﹣2|中,最小的是( ) A. B.﹣ C.0 D.|﹣2| 2.下列运算正确的是( ) A.﹣(﹣x+1)=x+1 B. C. D.(a﹣b)2=a2﹣b2 3.下列四个多项式,哪一个是2x2+5x﹣3的因式( ) A.2x﹣1 B.2x﹣3 C.x﹣1 D.x﹣3 4.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( ) A.m+3 B.m+6 C.2m+3 D.2m+6 5.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是( ) A.k为任何实数,方程都没有实数根 B.k为任何实数,方程都有两个实数根 C.k为任何实数,方程都有两个相等的实数根 D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下: 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( ) A.甲运动员得分的极差大于乙运动员得分的极差 B.甲运动员得分的中位数大于乙运动员得分的中位数 C.甲运动员的得分平均数大于乙运动员的得分平均数 D.甲运动员的成绩比乙运动员的成绩稳定 7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A.6折 B.7折 C.8折 D.9折 8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是( ) A. B. C. D. 9.下列说法中 ①一个角的两边分别垂直于另一角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形 ④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为 正确命题有( ) A.0个 B.1个 C.2个 D.3个 10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.2 B.2+ C.2 D.2+ 二、填空题(本大题共6小题,每小题3分,共24分) 11.化简:÷= . 12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度. 13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 . 14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为 . 15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是 . 16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是 . 三、(本大题共3个小题,每小题各6分,共18分) 17.先化简,再求值:(﹣2),其中x=2. 18.分别按下列要求解答: (1)在图1中.作出⊙O关于直线l成轴对称的图形; (2)在图2中.作出△ABC关于点P成中心对称的图形. 19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算? 四、(本大题共2个小题,每小题8分,共16分) 20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出): 解答下列问题: (1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整; (2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少? 21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F. (1)若AC=6,AB=10,求⊙O的半径; (2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由. 五、(本大题共2小题,每小题9分,共18分) 22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O. (1)求证:AD=AE; (2)连接OA,BC,试判断直线OA,BC的关系并说明理由. 23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数). 六、(本大题共2小题,每小题10分,共20分) 24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限. (1)当∠BAO=45°时,求点P的坐标; (2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上; (3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由. 25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F. (1)若点E与点P重合,求k的值; (2)连接OE、OF、EF.请将△OEF的面积用k表示出来; (3)是否存在点E使△OEF 的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由. 参考答案 一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是( ) A. B.﹣ C.0 D.|﹣2| 【解答】解:|﹣2|=2, ∵四个数中只有﹣,﹣为负数, ∴应从﹣,﹣中选; ∵|﹣|>|﹣|, ∴﹣<﹣. 故选:B. 2.(3分)下列运算正确的是( ) A.﹣(﹣x+1)=x+1 B. C. D.(a﹣b)2=a2﹣b2 【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误; B、=3﹣故本选项错误; C、|﹣2|=2﹣故本选项正确; D、(a﹣b)2=a2﹣2ab+b2故本选项错误; 故选:C. 3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式( ) A.2x﹣1 B.2x﹣3 C.x﹣1 D.x﹣3 【解答】解:∵2x2+5x﹣3 =(2x﹣1)(x+3), 2x﹣1与x+3是多项式的因式, 故选:A. 4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( ) A.m+3 B.m+6 C.2m+3 D.2m+6 【解答】解:依题意得剩余部分为 (m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9, 而拼成的矩形一边长为3, ∴另一边长是=2m+3. 故选:C. 5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是( ) A.k为任何实数,方程都没有实数根 B.k为任何实数,方程都有两个实数根 C.k为任何实数,方程都有两个相等的实数根 D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 【解答】解:△=k2﹣4(k﹣1) =k2﹣4k+4 =(k﹣2)2, ∵(k﹣2)2,≥0,即△≥0, ∴原方程有两个实数根,当k=2时,方程有两个相等的实数根. 故选:B. 6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下: 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( ) A.甲运动员得分的极差大于乙运动员得分的极差 B.甲运动员得分的中位数大于乙运动员得分的中位数 C.甲运动员的得分平均数大于乙运动员的得分平均数 D.甲运动员的成绩比乙运动员的成绩稳定 【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确; B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确; C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确; D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误. 故选:D. 7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A.6折 B.7折 C.8折 D.9折 【解答】解:设可打x折,则有1200×﹣800≥800×5%, 解得x≥7. 即最多打7折. 故选:B. 8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是( ) A. B. C. D. 【解答】解:因为x+y=k(矩形的面积是一定值), 整理得y=﹣x+k, 由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y>0,图象位于第一象限, 所以只有A符合要求. 故选:A. 9.(3分)下列说法中 ①一个角的两边分别垂直于另一角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形 ④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为 正确命题有( ) A.0个 B.1个 C.2个 D.3个 【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误. ②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确. ③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误. ④根据根与系数的关系有:a+b=7,ab=7, ∴a2+b2=(a+b)2﹣2ab=49﹣14=35, 即:AB2=35, AB= ∴AB边上的中线的长为.所以④正确. 故选:C. 10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.2 B.2+ C.2 D.2+ 【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA. ∵PE⊥AB,AB=2,半径为2, ∴AE=AB=,PA=2, 根据勾股定理得:PE==1, ∵点A在直线y=x上, ∴∠AOC=45°, ∵∠DCO=90°, ∴∠ODC=45°, ∴△OCD是等腰直角三角形, ∴OC=CD=2, ∴∠PDE=∠ODC=45°, ∴∠DPE=∠PDE=45°, ∴DE=PE=1, ∴PD=. ∵⊙P的圆心是(2,a), ∴a=PD+DC=2+. 故选:B. 二、填空题(本大题共6小题,每小题3分,共24分) 11.(3分)化简:÷= . 【解答】解:原式=•=. 故答案为: 12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度. 【解答】解:∵△ABC是等边三角形, ∴∠ACB=60°,∠ACD=120°, ∵CG=CD, ∴∠CDG=30°,∠FDE=150°, ∵DF=DE, ∴∠E=15°. 故答案为:15. 13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 . 【解答】解: 共有6种情况,在第四象限的情况数有2种, 所以概率为. 故答案为:. 14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为 80° . 【解答】解:由翻折可得∠B′=∠B=60°, ∴∠A=∠B′=60°, ∵∠AFD=∠GFB′, ∴△ADF∽△B′GF, ∴∠ADF=∠B′GF, ∵∠EGC=∠FGB′, ∴∠EGC=∠ADF=80°. 故答案为:80°. 15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是 ﹣4≤a≤﹣2 . 【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2, 当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a=﹣4, 则实数a的取值范围是﹣4≤a≤﹣2. 故答案为:﹣4≤a≤﹣2. 16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是 (2,0)或(4,0)或(2,0)或(﹣2,0). . 【解答】解:(1)当点P在x轴正半轴上, ①以OA为腰时, ∵A的坐标是(2,2), ∴∠AOP=45°,OA=2, ∴P的坐标是(4,0)或(2,0); ②以OA为底边时, ∵点A的坐标是(2,2), ∴当点P的坐标为:(2,0)时,OP=AP; (2)当点P在x轴负半轴上, ③以OA为腰时, ∵A的坐标是(2,2), ∴OA=2, ∴OA=OP=2, ∴P的坐标是(﹣2,0). 故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0). 三、(本大题共3个小题,每小题各6分,共18分) 17.(6分)先化简,再求值:(﹣2),其中x=2. 【解答】解:原式==×=, 当x=2时,原式=﹣=﹣1. 18.(6分)分别按下列要求解答: (1)在图1中.作出⊙O关于直线l成轴对称的图形; (2)在图2中.作出△ABC关于点P成中心对称的图形. 【解答】解:(1)(2)如图所示: 19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算? 【解答】解:(1)120×0.95=114(元), 若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元; (2)设所付钱为y元,购买商品价格为x元, 则按方案一可得到一次函数的关系式:y=0.8x+168, 则按方案二可得到一次函数的关系式:y=0.95x, 如果方案一更合算,那么可得到: 0.95x>0.8x+168, 解得:x>1120, ∴所购买商品的价格在1120元以上时,采用方案一更合算. 四、(本大题共2个小题,每小题8分,共16分) 20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出): 解答下列问题: (1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整; (2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少? 【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人); (2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%, 人数是400×10%=40(万人), ∴第六次人口普查中,该市常住人口中高中学历人数是55万人, ∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%. 21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F. (1)若AC=6,AB=10,求⊙O的半径; (2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由. 【解答】解:(1)连接OD.设⊙O的半径为r. ∵BC切⊙O于点D, ∴OD⊥BC. ∵∠C=90°, ∴OD∥AC, ∴△OBD∽△ABC. ∴=,即10r=6(10﹣r). 解得r=, ∴⊙O的半径为. (2)四边形OFDE是菱形.理由如下: ∵四边形BDEF是平行四边形, ∴∠DEF=∠B. ∵∠DEF=∠DOB, ∴∠B=∠DOB. ∵∠ODB=90°, ∴∠DOB+∠B=90°, ∴∠DOB=60°. ∵DE∥AB, ∴∠ODE=60°. ∵OD=OE. ∴OD=DE. ∵OD=OF, ∴DE=OF. 又∵DE∥OF, ∴四边形OFDE是平行四边形. ∵OE=OF, ∴平行四边形OFDE是菱形. 五、(本大题共2小题,每小题9分,共18分) 22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O. (1)求证:AD=AE; (2)连接OA,BC,试判断直线OA,BC的关系并说明理由. 【解答】(1)证明:在△ACD与△ABE中, ∵, ∴△ACD≌△ABE, ∴AD=AE. (2)答:直线OA垂直平分BC. 理由如下:连接BC,AO并延长交BC于F, 在Rt△ADO与Rt△AEO中, ∴Rt△ADO≌Rt△AEO(HL), ∴∠DAO=∠EAO, 即OA是∠BAC的平分线, 又∵AB=AC, ∴OA⊥BC且平分BC. 23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n为正整数). 【解答】解:∵,,,…,. ∴S1=()2,S2=()2,S3=()2,…,Sn=()2, ∵, ∴S=, ∴S=1+, ∴S=1+1﹣+1+﹣+…+1+, ∴S=n+1﹣=. 六、(本大题共2小题,每小题10分,共20分) 24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限. (1)当∠BAO=45°时,求点P的坐标; (2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上; (3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由. 【解答】(1)解:∵∠BPA=90°,PA=PB, ∴∠PAB=45°, ∵∠BAO=45°, ∴∠PAO=90°, ∴四边形OAPB是正方形, ∴P点的坐标为:(a,a). (2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点, ∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°, ∴∠FPB=∠EPA, ∵∠PFB=∠PEA,BP=AP, ∴△PBF≌△PAE, ∴PE=PF, ∴点P都在∠AOB的平分线上. (3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE=α. 在直角△APE中,∠AEP=90°,PA=, ∴PE=PA•cosα=•cosα, 又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O), ∴0°≤α<45°, ∴<h≤. 25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F. (1)若点E与点P重合,求k的值; (2)连接OE、OF、EF.请将△OEF的面积用k表示出来; (3)是否存在点E使△OEF 的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由. 【解答】解:(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2; (2)①当0<k<2时,如图1所示. 根据题意知,四边形OAPB是矩形,且BP=1,AP=2. ∵点E、F都在反比例函数(k>0)的图象上, ∴E(,2),F(1,k).则BE=,PE=1﹣,AF=k,PF=2﹣k, ∴S△OEF=S矩形OAPB﹣S△OBE﹣S△PEF﹣S△OAF =1×2﹣××2﹣×(1﹣)×(2﹣k)﹣×1×k =﹣k2+1; ②当k=2时,由(1)知,△OEF不存在; ③当k>2时,如图2所示.点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形. ∵PF⊥PE, ∴S△FPE=PE•PF=(﹣1)(k﹣2)=k2﹣k+1, ∴四边形PFGE是矩形, ∴S△PFE=S△GEF, ∴S△OEF=S矩形OCGD﹣S△DOF﹣S△GEF﹣S△OCE =•k﹣﹣(k2﹣k+1)﹣=k2﹣1; (3)当k>0时,存在点E使△OEF 的面积为△PEF面积的2倍.理由如下: ①如图1所示,当0<k<2时,S△PEF=×(1﹣)×(2﹣k)=, S△OEF=﹣k2+1, 则×2=﹣k2+1, 解得,k=2(舍去),或k=; ②由(1)知,k=2时,△OEF与△PEF不存在; ③如图2所示,当k>2时,S△PEF=﹣k2+k﹣1,S△OEF=k2﹣1, 则2(﹣k2+k﹣1)=k2﹣1, 解得k=(不合题意,舍去),或k=2(不合题意,舍去), 则E点坐标为:(3,2). 中学自主招生数学试卷 一、选择题(本大题共12小题,共36.0分) 1. 下列各组数中结果相同的是( ) A. 32与23 B. |-3|3与(-3)3 C. (-3)2与-32 D. (-3)3与-33 2. 据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( ) A. 1.442×107 B. 0.1442×107 C. 1.442×108 D. 0.1442×108 3. 下列计算中,错误的是( ) A. 5a3-a3=4a3 B. (-a)2⋅a3=a5 C. (a-b)3⋅(b-a)2=(a-b)5 D. 2m⋅3n=6m+n 4. 下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( ) A. 1个 B. 2个 C. 3个 D. 4个 5. 某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A. 平均数是58 B. 众数是42 C. 中位数是58 D. 每月阅读数量超过40的有4个月 6. 在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是( ) A. 正三角形 B. 正四边形 C. 正五边形 D. 正六边形 7. 下列命题错误的是( ) A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形 B. 矩形一定有外接圆 C. 对角线相等的菱形是正方形 D. 一组对边平行,另一组对边相等的四边形是平行四边形 8. 如图是某几何体的三视图,则该几何体的表面积为( ) A. 24+123 B. 16+123 C. 24+63 D. 16+63 9. 在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( ) A. 12 B. 14 C. 38 D. 58 10. 运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=( ) A. 1 B. 2 C. 3 D. 4 11. 如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为( ) A. 152 B. 43 C. 215 D. 55 12. 如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( ) ①AE=BF;②AE⊥BF;③sin∠BQP=45;④S四边形ECFG=2S△BGE. A. 4 B. 3 C. 2 D. 1 二、填空题(本大题共4小题,共12.0分) 13. 分解因式:4ax2-ay2=______. 14. 如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______. 15. 如图,已知第一象限内的点A在反比例函数y=2x上,第二象限的点B在反比例函数y=kx上,且OA⊥OB,cosA=33,则k的值为______. 16. 如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______. 三、计算题(本大题共2小题,共12.0分) 17. 先化简,再求值:(2aa2-1-1a+1)÷a+2a2-a,其中a=5. 18. 如图,在△ABC中,AD平分∠BAC,按如下步骤作图: 第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N; 第二步,连接MN分别交AB、AC于点E、F; 第三步,连接DE、DF. 若BD=6,AF=4,CD=3,求线段BE的长. 四、解答题(本大题共5小题,共40.0分) 19. 计算:8+3tan30°+|1-2|-(-12)-2. 20. 将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀. (1)这部分男生有多少人?其中成绩合格的有多少人? (2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度? (3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率. 21. 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位需多少万元? (2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案? 22. 如图,△AOB中,A(-8,0),B(0,323),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F, (1)⊙P的半径为______; (2)求证:EF为⊙P的切线; (3)若点H是CD 上一动点,连接OH、FH,当点P在PD 上运动时,试探究OHFH是否为定值?若为定值,求其值;若不是定值,请说明理由. 23. 如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D. (1)求抛物线的函数表达式; (2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AFFB=34,且△BCG与△BCD面积相等,求点G的坐标; (3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值. 答案和解析 1.【答案】D 【解析】 解:A、32=9,23=8,故不相等; B、|-3|3=27(-3)3=-27,故不相等; C、(-3)2=9,-32=-9,故不相等; D、(-3)3=-27,-33=-27,故相等, 故选:D. 利用有理数乘方法则判定即可. 本题主要考查了有理数乘方,解题的关键是注意符号. 2.【答案】A 【解析】 解:14420000=1.442×107, 故选:A. 根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决. 本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法. 3.【答案】D 【解析】 解:A、5a3-a3=4a3,正确,本选项不符合题意; B、(-a)2•a3=a5,正确,本选项不符合题意; C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意; D、2m•3n≠6m+n,错误,本选项符合题意; 故选:D. 根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案. 本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘. 4.【答案】C 【解析】 解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C. 根据轴对称图形与中心对称图形的概念求解. 掌握中心对称图形与轴对称图形的概念: 轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形; 中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形. 5.【答案】C 【解析】 解:A、每月阅读数量的平均数是=56.625,故A错误; B、出现次数最多的是58,众数是58,故B错误; C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确; D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误; 故选:C. 根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D. 本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据. 6.【答案】D 【解析】 解:由题意这个正n边形的中心角=60°, ∴n==6, ∴这个多边形是正六边形, 故选:D. 求出正多边形的中心角即可解决问题. 本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型. 7.【答案】D 【解析】 解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确; B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确; C、对角线相等的菱形是正方形,故此选项正确; D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误; 本题选择错误的命题, 故选:D. A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可; B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆; C、根据正方形的判定方法进行判断; D、一组对边平行且相等的四边形是平行四边形. 本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键. 8.【答案】A 【解析】 解:观察该几何体的三视图发现该几何体为正六棱柱; 该六棱柱的棱长为2,正六边形的半径为2, 所以表面积为2×2×6+×2××6×2=24+12, 故选:A. 首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可. 本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题. 9.【答案】B 【解析】 解:画树状图得: ∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况, ∴经过3次传球后,球仍回到甲手中的概率是:=. 故选:B. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案. 此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 10.【答案】D 【解析】 解:∵3※2=1, ∴运算※就是找到第三列与第二行相结合的数, ∴(2※4)=3,(1※3)=3, ∴3※3=4. 故选:D. 根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可. 本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算. 11.【答案】C 【解析】 解:∵∠ABC的平分线交CD于点F, ∴∠ABE=∠CBE, ∵四边形ABCD是平行四边形, ∴DC∥AB, ∴∠CBE=∠CFB=∠ABE=∠E, ∴CF=BC=AD=8,AE=AB=12, ∵AD=8, ∴DE=4, ∵DC∥AB,展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




天津市第一中学2020中考提前自主招生数学模拟试卷(9套)附解析.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/5224497.html