分享
分销 收藏 举报 申诉 / 21
播放页_导航下方通栏广告

类型清华材料科学基础习题及答案.doc

  • 上传人:人****来
  • 文档编号:4788927
  • 上传时间:2024-10-12
  • 格式:DOC
  • 页数:21
  • 大小:674.01KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    清华 材料科学 基础 习题 答案
    资源描述:
    《晶体结构与缺陷》 第一章习题及答案 1-1. 布拉维点阵的基本特点是什么? 答:具有周期性和对称性,而且每个结点都是等同点。 1-2. 论证为什么有且仅有14种Bravais点阵。 答:第一,不少于14种点阵。对于14种点阵中的任一种,不可能找到一种连接结点的方法,形成新的晶胞而对称性不变。 第二,不多于14种。如果每种晶系都包含简单、面心、体心、底心四种点阵,七种晶系共28种Bravais点阵。但这28种中有些可以连成14种点阵中的某一种而对称性不变。例如体心单斜可以连成底心单斜点阵,所以并不是新点阵类型。 1-3. 以BCC、FCC和六方点阵为例说明晶胞和原胞的异同。 答:晶胞和原胞都能反映点阵的周期性,即将晶胞和原胞无限堆积都可以得到完整的整个点阵。但晶胞要求反映点阵的对称性,在此前提下的最小体积单元就是晶胞;而原胞只要求体积最小,布拉维点阵的原胞都只含一个结点。例如:BCC晶胞中结点数为2,原胞为1;FCC晶胞中结点数为4,原胞为1;六方点阵晶胞中结点数为3,原胞为1。见下图,直线为晶胞,虚线为原胞。 BCC FCC 六方点阵 1-4. 什么是点阵常数?各种晶系各有几个点阵常数? 答:晶胞中相邻三条棱的长度a、b、c与这三条棱之间的夹角α、β、γ分别决定了晶胞的大小和形状,这六个参量就叫做点阵常数。 晶系 a、b、c,α、β、γ之间的关系 点阵常数的个数 三斜 a≠b≠c,α≠β≠γ≠90º 6 (a、b、c 、α、β、γ) 单斜 a≠b≠c,α=β=90≠γ或α=γ=90≠β 4 (a、b、c、γ或a、b、c、β) 斜方 a≠b≠c,α=β=γ=90º 3 (a、b、c) 正方 a=b≠c,α=β=γ=90º 2 (a、c) 立方 a=b=c,α=β=γ=90º 1 (a) 六方 a=b≠c,α=β=90º,γ=120º 2 (a、c) 菱方 a=b=c,α=β=γ≠90º 2 (a、α) 1-5. 分别画出锌和金刚石的晶胞,并指出其点阵和结构的差别。 答:点阵和结构不一定相同,因为点阵中的结点可以代表多个原子,而结构中的点只能代表一个原子。锌的点阵是六方点阵,但在非结点位置也存在原子,属于HCP结构;金刚石的点阵是FCC点阵,但在四个四面体间隙中也存在碳原子,属于金刚石结构。见下图。 锌的结构 金刚石的结构 1-6. 写出立方晶系的{123}晶面族和<112>晶向族中的全部等价晶面和晶向的具体指数。 答:{123} = (123) +(23) +(13)+ (12) +(132) +(32) +(12) +(13) +(213) +(13) +(23) +(21) +(231) +(31) +(21) +(23) +(312) +(12) +(32) +(31) +(321) +(21) +(31) +(32) <112> = [112] +[12] +[12] +[11] +[121] +[21] +[11] +[12] +[211] +[11] +[21] +[21] 1-7. 在立方晶系的晶胞图中画出以下晶面和晶向:(102)、(11)、(1)、[110]、[11]、[10]和[21]。 1-8. 标注图中所示立方晶胞中的各晶面及晶向指数。 1-9. 写出六方晶系的{110}、{102}晶面族和<20>、<011>晶向族中的各等价晶面及等价晶向的具体指数。 答:{110} = (110) +(20) + (20) {102} = (102) +(012) +(102) +(012) +(012) +(102) <20> = [20] +[110] +[20] <011> = [011] +[011] +[101] +[101] +[011] +[101] 1-10. 在六方晶胞图中画出以下晶面和晶向:(0001)、(010)、(110)、(102)、(012)、[0001]、[010]、[110]、[011]和[011]。 1-11. 标注图中所示的六方晶胞中的各晶面及晶向指数。 1-12. 用解析法求1-11第二图中的各晶向指数(按三指数-四指数变换公式)。 解:由三指数[U V W]转化为四指数[u v t w]可利用公式: U = 2u +v , V= 2v + u , W = w 将⅓[23]、⅓[110]、⅓[113]、½[010]中的u、v、w代入公式,得 [1]、 [110]、 [111]、 ½ [120 ]。 1-13. 根据FCC和HCP晶体的堆垛特点论证这两种晶体中的八面体和四面体间隙的尺寸必相同。 答:研究FCC晶体的(111)密排面和HCP晶体的(0001)密排面,发现两者原子排列方式完全相同;再研究两者的相邻两层密排面,发现它们层与层之间的吻合方式也没有差别。事实上只有研究相邻的三层面时,才会发现FCC和HCP的区别,而八面体间隙与四面体间隙都只跟两层密排原子有关,所以对于这两种间隙,FCC与HCP提供的微观环境完全相同,他们的尺寸也必相同。 1-14. 以六方晶体的三轴a、b、c为基,确定其八面体和四面体间隙中心的坐标。 答:八面体间隙有六个,坐标分别为: (⅓,-⅓,¼)、(⅓,⅔,¼)、(-⅔,-⅓,¼)、(⅓,-⅓,¾)、(⅓,⅔,¾)、(-⅔,-⅓,¾); 四面体间隙共有二十个,在中轴上的为:(0,0, ⅜)、(0,0, ⅝); 在六条棱上的为:(1,0, ⅜)、(1,1, ⅜)、(0,1, ⅜)、(-1,0, ⅜)、(-1,-1, ⅜)、(0,-1, ⅜)、 (1,0, ⅝)、(1,1, ⅝)、(0,1, ⅝)、(-1,0, ⅝)、(-1,-1, ⅝)、(0,-1, ⅝); 在中部的为:(⅔,⅓,⅛)、(-⅓,⅓,⅛)、(-⅓,-⅔,⅛)、(⅔,⅓,⅞)、(-⅓,⅓,⅞)、(-⅓,-⅔,⅞)。 1-15. 按解析几何证明立方晶系的[h k l]方向垂直与(h k l)面。 证明:根据定义,(h k l)面与三轴分别交于a/h、a/k、a/l,可以推出此面方程为 x/(a/h) + y/(a/k) + z/(a/l) = 1 => hx + ky +lz = a; 平行移动得面 hx + ky +lz = 0; 又因为 (h, k, l) • (x, y, z) = hx + ky + lz ≡ 0,知矢量(h, k, l)恒垂直于此面,即[h k l]方向垂直于hx + ky +lz = 0面,所以垂直于hx + ky +lz = a即(h k l)面。 1-16. 由六方晶系的三指数晶带方程导出四指数晶带方程。 解:六方晶系三指数晶带方程为 HU + KV + LW = 0 ; 面(H K L)化为四指数(h k i l),有 H = h , K = k , L = l ; 方向[U V W]化为四指数[u v t w]后,有 U = 2u +v , V= 2v + u , W = w ; 代入晶带方程,得 h(2u +v) + k(2v + u) + lw = 0 ; 将i =–(h+k),t =–(u+v)代入上式,得 hu + kv + it + lw = 0。 1-21.求出立方晶体中指数不大于3的低指数晶面的晶面距d和低指数晶向长度L(以晶胞边长a为单位)。 解:晶面间距为d = a/sqrt (h2+k2+l2),晶向长度为L = a·sqrt (u2+v2+w2),可得 晶面族 d(×a) 晶面族 d(×a) 晶向族 L(×a) 晶向族 L(×a) {100} 1 {311} √11/11 <100> 1 <311> √11 {110} √2/2 {222} √3/6 <110> √2 <222> 2√3 {111} √3/3 {320} √13/13 <111> √3 <320> √13 {200} 1/2 {321} √14/14 <200> 2 <321> √14 {210} √5/5 {322} √17/17 <210> √5 <322> √17 {211} √6/6 {330} √2/6 <211> √6 <330> 3√2 {220} √2/4 {331} √19/19 <220> 2√2 <331> √19 {221} 1/3 {332} √22/22 <221> 3 <332> √22 {300} 1/3 {333} √3/9 <300> 3 <333> 3√3 {310} √10/10 <310> √10 1-22.求出六方晶体中[0001]、[100]、[110]和[101]等晶向的长度(以点阵常数a和c为单位)。 解:六方晶体晶向长度公式: L = a·sqrt (U2+V2+W2c2/a2-UV);(三指数) L = a·sqrt (u2+v2+2t2+w2c2/a2-uv);(四指数) 代入四指数公式,得长度分别为 c、 √3*a、 3a、 √(3a2+c2)。 1-23.计算立方晶体中指数不大于3的各低指数晶面间夹角(列表表示)。为什么夹角和点阵常数无关。 解:利用晶面夹角公式cosφ= (h1h2+k1k2+l1l2)/sqrt((h12+k12+l12)*(h22+k22+l22))计算。两晶面族之间的夹角根据所选晶面的不同可能有多个,下面只列出一个,其他这里不讨论。 cosφ {100} {110} {111} {210} {211} {221} {310} {100} 1 √2/2 √3/3 2√5/5 √6/3 2/3 3√10/10 {110} 1 √6/3 3√10/10 √3/2 2√2/3 2√5/5 {111} 1 √15/5 2√2/3 5√3/9 2√30/15 {210} 1 √30/6 2√5/5 7√2/10 {211} 1 7√6/18 7√15/30 {221} 1 4√10/15 {310} 1 后面的结果略。 1-24.计算立方晶体中指数不大于3的各低指数晶向间夹角(列表表示),并将所得结果和上题比较。 解:利用晶向夹角公式cosθ= (u1u2+v1v2+w1w2)/sqrt ((u12+v12+w12)*(u22+v22+w22))计算。两晶向族之间的夹角根据所选晶向的不同可能有多个,所得结果与上题完全相同,只将表示晶面的“{}”替换为“<>”即可。从表面上看是因为晶向夹角公式与晶面夹角公式完全相同的原因,深入分析,发现晶向[x y z]是晶面(x y z)的法线方向,是垂直关系,所以两晶面的夹角恒等于同指数的晶向夹角。 1-25.计算六方晶体中(0001)、{100}和{110}之间的夹角。 解:化为三指数为:(001)、(210)或(120)或(10)、(110)或(10)或(20),利用六方晶系面夹角公式(P41公式1-39),分别代入求得 (0001) 与 {100}或{110}: 夹角为90º; {100} 与 {110}:夹角为30º或90º。 1-26.分别用晶面夹角公式及几何法推导六方晶体中(102)面和(012)面的夹角公式(用点阵常数a和c表示)。 解:(1) 化为三指数为(102)、(02),代入公式(P41 公式1-39)得 cosφ= … = (3a2-c2)/(3a2+c2) (2) 如右图,利用余弦定律,可得 cosφ= … = (3a2-c2)/(3a2+c2) 1-27.利用上题所得的公式具体计算Zn(c/a=1.86)、Mg(c/a=1.62)和Ti(c/a=1.59)三种金属的(102)面和(012)面的夹角。 解:代入公式,得 cosφ1 = -0.0711, cosφ2 = 0.0668, cosφ3 = 0.0854; 得夹角为φ1 (Zn)= 94.1º, φ2 (Mg)= 86.2º, φ3 (Ti)= 85.1º。 1-28.将(102)和(012)分别换成[011]和[101],重做1-26、1-27题。 解:化为三指数为[1]和[211],代入公式,得cosβ= … = (c2-3a2)/(3a2+c2) 见1-26题答案中的图,利用余弦定律,可得 cosβ= … = (c2-3a2)/(3a2+c2) 代入公式,得 cosφ1 = 0.0711, cosφ2 = -0.0668, cosφ3 = -0.0854; 得夹角为φ1 (Zn)= 85.9º, φ2 (Mg)= 93.8º, φ3 (Ti)= 94.9º。 1-29.推导菱方晶体在菱方轴下的点阵常数aR、αR和在六方轴下的点阵常数aH、cH之间的换算公式。 解:在aH、bH、cH下,aR = ⅓[11], 所以点阵常数aR = L = aH·sqrt (U2+V2+W2cH2/aH2-UV) = ⅓√(3aH2+cH2), 又因为αR是晶向⅓[11]与⅓[121]的夹角, 所以点阵常数αR = arcos ( (cH2/aH2-3/2)/(3+ cH2/aH2) ) = arcos ( (2cH2-3aH2)/(6aH2+2cH2) )。 可得a H = aR·sqrt (2(1-cosα)); c H = aR·sqrt (3(1+2cosα))。 1-30.已知α-Al2O3(菱方晶体)的点阵常数为aR = 5.12 Å、αR = 55º17’,求它在六方轴下的点阵常数aH和cH。 解:利用上题公式,将aR 、αR 数值代入,可得aH = 4.75 Å、cH = 12.97 Å。 第一章补充题: 1. Prove that the A-face-centered hexagonal lattice is not a new type of lattice in addition to the 14 space lattice. 答:如图,六方点阵加入a面面心以后,对称性降低,可以连成一个面心斜方点阵。所以它不是一个新点阵。 2. Draw a primitive cell of BCC lattice. (答案见1-3) 3. Prove that the sizes of both octahedral and tetrahedral interstitials in HCP are same as there in FCC. (答案见1-13,计算在课本P18、P20) 4. Determine the coordinates of centers of both the octahedral and the tetrahedral interstitial in HCP refered to a, b and c.(答案见1-14) 5. Prove that [h k l]⊥(h k l) for cubic crystal.(答案见1-15) 6. Show all possible {102} planes in the hexagonal unit cell and label the specific indices for each plane. 答:{102} = (102) +(012) +(102) +(012) +(012) +(102) 如图,顺序按逆时针排列。 7. Point out all the <110> on (111) planes both analytically and graphically. 答:画图法:下图。 解析法:(111)面的面方程为x+y+z = 1,列出所有可能的<110> = [110]+ [011] +[101] +[10] +[01] +[10] (其他为这六个的反方向),将(x y z)代入面方程,得知前三个不满足,后三个满足,即[10]、[01]、[10]在(111)面上。 8. Prove that the zone equation holds for cubic system. 证明:已知在立方晶系中[h k l]方向垂直与(h k l)面, 由于[u v w]方向属于(h k l)面, 必有[h k l]垂直于[u v w], 即[h k l][u v w] = 0,得hu +kv +lw = 0。 第二章习题及答案 2-11.比较石墨和金刚石的晶体结构、结合键和性能。 答:金刚石晶体结构为带四面体间隙的FCC,碳原子位于FCC点阵的结合点和四个不 相邻的四面体间隙位置(见1-6题答案),碳原子之间都由共价键结合,因此金刚石硬度高,结构致密。石墨晶体结构为简单六方点阵,碳原子位于点阵结点上,同层之间由共价键结合,邻层之间由范德华力结合,因此石墨组织稀松,有一定的导电性,常用作润滑剂。 2-12.为什么元素的性质随原子序数周期性的变化?短周期元素和长周期元素的变化有何不 同?原因何在? 答:因为元素的性质主要由外层价电子数目决定,而价电子数目是随原子序数周期性变 化的,所以反映出元素性质的周期性变化。长周期元素性质的变化较为连续、逐渐过渡,而短周期元素性质差别较大,这是因为长周期过渡族元素的亚层电子数对元素性质也有影响造成的。 2-13.讨论各类固体中原子半径的意义及其影响因素,并举例说明。 答:对于金属和共价晶体,原子半径定义为同种元素的晶体中最近邻原子核之间距离之半。共价晶体中原子间结合键是单键、双键或三键将会影响原子半径,所以一般使用数值最大的单键原子半径r(1);金属晶体中,配位数会影响原子半径,例如α-Fe (CN=8)比γ-Fe (CN=12)的原子半径小3%,一般采用CN=12的原子半径。 对于非金属的分子晶体,同时存在两个原子半径:一是共价半径,另一是范德华原子半径(相邻分子间距离之半)。例如氯分子晶体中,两半径分别为0.099nm和0.180nm。 对于离子晶体,用离子半径r+、r-表示正、负离子尺寸。在假设同一离子在不同离子晶体中有相同半径的情况下,可以大致确定离子半径。但离子半径只是一个近似的概念,电子不可能完全脱离正离子,因此许多离子键或多或少带有共价键的成分,当这种特点较为突出时,离子半径的意义就不确切了。 2-14.解释下列术语: 合金——由金属和其它一种或多种元素通过化学键结合而成的材料。 组元——组成合金的每种元素(金属、非金属)。 相——合金内部具有相同的(或连续变化的)成分、结构和性能的部分或区域。 组织——一定外界条件下,组成一定成分的合金的若干种不同的相的总体。 固溶体——溶质和溶剂的原子占据了一个共同的布拉维点阵,且此点阵类型与溶剂点阵类型相同;组元的含量可在一定范围内改变而不会导致点阵类型的改变。具有以上两性质的金属或非金属合成物就叫做固溶体。 金属间化合物——金属与金属形成的化合物。 超结构(超点阵)——有序固溶体中的各组元分点阵组成的复杂点阵。 分点阵(次点阵)——有序固溶体中各组元原子分别占据的各自的布拉维点阵。 负电性——表示元素在和其它元素形成化合物或固溶体时吸引电子的能力的参量。 电子浓度——合金中每个原子的平均价电子数。 2-15.有序合金的原子排列有何特点?这种排列和结合键有什么关系?为什么许多有序合金在高温下变成无序?从理论上如何确定有序-无序转变的温度(居里温度)? 答:有序合金中各组元原子占据各自的布拉维点阵,整个合金就是这些分点阵组成的超点阵。这种排列是由原子间金属键造成的,是价电子集体将原子规则排列。高温下由于原子的热运动加剧,到一定程度就会摆脱原来的结点位置,造成原子排列的无序性。理论上可以利用金属键的强度与分子平均自由能的大小关系确定有序合金的转变温度。 2-16.试将图2-43中的各种有序合金结构分解为次点阵(指出次点阵的数量和类型)。 答:(a) 两个次点阵,简单立方点阵。Cu、Zn各一个。 (b) 四个次点阵,简单立方点阵。Au一个,Cu三个。 (c) 四个次点阵,简单立方点阵。Cu、Au各两个。 (d) 四个次点阵,面心立方点阵。a、b、c、d各一个。 (e) 四十个次点阵,简单立方点阵。Cu、Au各二十个。 2-17.简述Hume-Rothery规则及其实际意义。 答:(1) 形成合金的元素原子半径之差超过14%~15%,则固溶度极为有限; (2) 如果合金组元的负电性相差很大,固溶度就极小; (3) 两元素的固溶度与它们的原子价有关,高价元素在低价元素中的固溶度大于低价元素在高价元素中的固溶度; (4) ⅡB~ⅤB族溶质元素在ⅠB族溶剂元素中的固溶度都相同(e/a=1.36),与具体的元素种类无关; (5) 两组元只有具有相同的晶体结构才能形成无限(或连续)固溶体。 Hume-Rothery规则虽然只是否定规则((1)、(2)),只是定性或半定量的规则,而且后三条都只限于特定情况。但它总结除了合金固溶度的一些规律,帮助预计固溶度的大小,因而对确定合金的性能和热处理行为有很大帮助。 2-18.利用Darken-Gurry图分析在Mg中的固溶度可能比较大的元素(所需数据参看表2-7)。 答:Mg元素的原子半径r=0.16nm,x=1.2,根据Hume-Rothery规则,在r∈(0.136,0.184),x∈(0.8,1.6)范围内寻找元素,做一椭圆,由课本P100图2-45可以看出,可能的元素有Cd、Nb、Ti、Ce、Hf、Zr、Am、P、Sc及镧系元素。 2-19.什么是Vegard定律?为什么实际固溶体往往不符合Vegard定律? 答:实验发现两种同晶型的盐形成连续固溶体时,固溶体的点阵常数与成分呈直线关系,即点阵常数正比于任一组元的浓度,这就是Vegard定律。因为Vegard定律反映了成分对合金相结构的影响,但对合金相结构有影响的不只是成分,还有其它因素(如电子浓度、负电性等),这些因素导致了实际固溶体与Vegard定律不符。 2-20.固溶体的力学和物理性能和纯组元的性能有何关系?请定性地加以解释。 答:固溶体的强度和硬度往往高于各组元,而塑性则较低,这是因为:(1) 对于间隙固溶体,溶质原子往往择优分布在位错线上,形成间隙原子“气团”,将位错牢牢钉扎住,起到了强化作用;(2) 对于置换固溶体,溶质原子往往均匀分布在点阵内,造成点阵畸变,从而增加位错运动的阻力,这种强化作用较小。 固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系,这是因为溶质原子一般会破坏溶剂原来的物理性能,但合金呈有序状态时,物理性能又会突变,显示出良好的物理性能。 2-21.叙述有关离子化合物结构的Pauling规则,并用此规则分析金红石的晶体结构。 答:(1) 在正离子周围形成一负离子配位多面体,正负离子之间的距离取决于离子半径之和,而配位数则取决于正负离子半径之比; (2) 正离子给出的价电子数等于负离子得到的价电子数,所以有Z+/CN+ = Z-/CN-; (3) 在一个配位结构中,当配位多面体共用棱、特别是共用面时,其稳定性会降低,而且正离子的电价越高、配位数越低,则上述效应越显著; (4) 在含有一种以上正离子的晶体中,电价大、配位数小的正离子周围的负离子配位多面体力图共顶连接; (5) 晶体中配位多面体的类型力图最少。 对于金红石:(1) 正负离子半径比为0.48,根据课本P104表2-8,可知负离子多面体为八面体,正离子配位数为6;(2) Z+ = 4,Z- = 2,所以CN- = CN+•Z-/ Z+ = 6/2 = 3。 2-22.讨论氧化物结构的一般规律。 答:氧化物结构的重要特点就是氧离子密排。大多数简单的氧化物结构中氧离子都排成面心立方、密排六方或近似密排的简单立方,而正离子则位于八面体间隙、四面体间隙或简单立方的体心。 2-23.讨论硅酸盐结构的基本特点和类型。 答:基本特点:(1) 硅酸盐的基本结构单元是[SiO4]四面体,硅原子位于氧原子四面体的间隙中;(2) 每个氧最多只能被两个[SiO4]四面体共有;(3) [SiO4]四面体可以互相孤立地在结构中存在,也可以通过共顶点互相连接;(4) Si-O-Si的结合键形成一折线。 按照硅氧四面体在空间的组合情况可以分为:岛状、链状、层状、骨架状。 2-24.从以下六个方面总结比较价化合物、电子化合物、TCP相和间隙相 (间隙化合物)等各种金属间化合物。 价化合物 电子化合物 TCP相 间隙相 组成元素 金属与金属,金属与准金属 贵金属与B族元素,Ⅷ族(铁族)元素和某些B族元素 原子半径相差不大的金属元素 原子半径较大的过渡族金属元素和原子半径较小的准金属元素(H、B、C、N、Si等) 结构特点 通过电子的转移或共用,形成8电子稳定组态 结构主要由电子浓度决定 由密排四面体按一定次序堆垛而成 通常金属原子排成FCC或CPH结构,准金属原子位于四面体或八面体间隙 结合键 离子键、共价键或离子-共价键 主要是金属键 金属键 混合型:金属原子之间为金属键,金属与准金属原子键为共价键 决定结构的主要因素及理论基础 负电性,电子层理论 电子浓度,电子论 组元原子半径比,拓扑学 组元原子半径比,空间几何学 性能特点 非金属性质或半导体性质 明显的金属特性 σ相硬而脆,Cr3Si型结构合金大都具有超导性质 宽相互固溶范围,明显的金属性质,很高的熔点、极高的硬度和脆性 典型例子 MgSe、Pt2P、Mg2Si、MnS、MgS、MnAs CuZn、Cu5Zn8、CuZn3 MgCu2、MgZn2、MgNi2(Laves相)、Fe-Cr合金(σ相)、Cr3Si Fe4N、Fe2N、NaH、TiH2(简单);Fe3C、Cr23C6、Fe4W2C(复杂) 第三章习题及答案 3-1. 写出FCC晶体在室温下所有可能的滑移系统(要求写出具体的晶面、晶向指数)。 答:共有12个可能的滑移系统:(111)[10]、(111)[01]、(111)[10]、(11)[110]、(11)[01]、(11)[101]、(11)[110]、(11)[10]、(11)[011]、(11)[011]、(11)[101]、(11)[10]。 3-2. 已知某铜单晶试样的两个外表面分别是(001)和(111)。请分析当此晶体在室温下滑移时在上述每个外表面上可能出现的滑移线彼此成什么角度? 答:可能的滑移面为{111}晶面族,它们与(001)面的交线只可能有[110]和[10],所以滑移线彼此平行或垂直。滑移面与(111)面的交线可能有[10]、[01]、[10],所以滑移线彼此平行或成60º角。 3-3. 若直径为5mm的单晶铝棒在沿棒轴[123]方向加40N的拉力时即开始滑移,求铝在滑移时的临界分切应力。 解:单晶铝为FCC结构,滑移系统为{111}<110>,利用映象规则,知滑移面和滑移方向为(11)[101],它们与轴夹角分别为 cosφ= [123]·[11]/(|[123]| |[11]|) = 4/√42; cosλ= [123]·[101]/(|[123]| |[101]|) = 2/√7; 所以临界分切应力τc = Fcosλcosφ/A0 = … = 0.95MPa。 3-4. 利用计算机验证,决定滑移系统的映像规则对FCC晶体和具有{110}<111>滑移系统的BCC晶体均适用。(提示:对于任意设定的外力方向,用计算机计算所有等价滑移系统的取向因子。) 答:μ= cosλcosφ,计算所有等价滑移系的μ,可发现μmax必对应映象规则所选择的滑移系。 3-5. 如果沿FCC晶体的[110]方向拉伸,请写出可能起动的 滑移系统。 答:可能起动的滑移系统有四个,分别为(11)[101]、 (11)[011]、(111)[10]、(111)[01]。 3-6. 请在Mg的晶胞图中画出任一对可能的双滑移系统,并 标出具体指数。 答:Mg为HCP结构,其滑移系统为{0001}<110>和{100}<110>,右图中标出一组可能的双滑移系统:(010)[20]和(100)[20]。 3-7. 证明取向因子的最大值为0.5(μmax =0.5)。 证:如右图,λ= <F, b>,φ= <F, n>,所以cosλ= OA/OP,cosφ= OB/OP,C为P的投影,∠POC=α,所以 cos2α= OC2/OP2 = (OA2+OB2)/OP2, 由此可得 μ= cosλcosφ= OA·OB/OP2 = cos2α·OA·OB/(OA2+OB2) ≤OA·OB/(OA2+OB2) ≤0.5, 当α=0或π,OA=OB时,μ取最大值0.5,此时F、n、 b共面且λ=φ。 3-8. 如果沿铝单晶的[23]方向拉伸,请确定:(1) 初始滑移系统;(2) 转动规律和转轴;(3) 双滑移系统;(4) 双滑移开始时晶体的取向和切变量;(5) 双滑移过程中晶体的转动规律和转轴;(6) 晶体的最终取向(稳定取向)。 解:(1) 铝单晶为FCC结构,[23]位于取向三角形[001]―[11]―[101]中,所以初始滑移系统为(111)[01]; (2) 试样轴转向[01],转轴为[23]×[01] = [2],即[1]; (3) 双滑移系统为(111)[01]-(1)[101]; (4) 利用L = l + γ(l·n)b,设L = [u w],得 L = [23]+4γ[01]/√6 ,由此可知u=2,w=4,γ=√6/4, 所以晶体取向为[24],即[12],切变量为√6/4; (5) 双滑移时,试样轴一方面转向[01],转轴n1 = [12]×[01] = [1],同时转向[101],转轴n2 = [12]×[101] = [11],合成转轴为[000],所以晶体不再转动; (6) 由(5)可知晶体最终取向为[12]。 3-9. 将上题中的拉伸改为压缩,重解上题。 解:(1) [23]位于取向三角形[001]―[11]―[101]中,所以初始滑移系统为(111)[01]; (2) 试样轴转向[111],转轴为[23]×[111] = [13]; (3) 双滑移系统为(111)[01]-(11)[011]; (4) 利用A = a - γ(a·b)n,设A = [u 0 w],得 A = [23]- 4γ[111]/√6 ,由此可知u=3,w=4,γ= -√6/4, 所以晶体取向为[304],切变量为-√6/4; (5) 双滑移时,试样轴一方面转向[111],转轴n1 = [304]×[111] = [13],同时转向[11],转轴n2 = [304]×[11] = [41],合成转轴为[020]即[010],所以双滑移后F点沿[001]-[101]边移动; (6) 设稳定取向为[u’ 0 w’],要使n= [000],需有[u’ 0 w’]×([111]+[11]) = [000],即u’ = w’,故稳定取向为[101]。 3-10.将3-8题中的铝单晶改为铌单晶,重解该题。 解:(1) 铌单晶为BCC结构,[23]位于取向三角形[001]―[11]―[101]中,所以初始滑移系统为(01)[111]; (2) 试样轴转向[111],转轴为[23]×[111] = [13]; (3) 双滑移系统为(01)[111]-(011)[11]; (4) 利用L = l + γ(l·n)b,设L = [u 0 w],得 L = [23] +4γ[111]/√6 ,由此可知u=3,w=4,γ=√6/4, 所以晶体取向为[304],切变量为√6/4; (5) 双滑移时,试样轴一方面转向[111],转轴n1 = [304]×[111] = [13],同时转向[11],转轴n2 = [304]×[11] = [41],合成转轴为[020]即[010],所以双滑移后F点沿[001]-[101]边移动; (6) 设稳定取向为[u’ 0 w’],要使n= [000],需有[u’ 0 w’]×([111]+[11]) = [000],即u’ = w’,故稳定取向为[101]。 3-11.分别用矢量代数法和解析几何法推导单晶试棒在拉伸时的长度变化公式。 解:(1) 设试棒原来的方向矢量为l,拉伸后变为L,n和b方向如图,则由此知 L = l+γ·OA·b = l+γ(l·n)b; ∴ L2 = L·L = [l+γ(l·n)b]·[l+γ(l·n)b] = l2 +2γ(l·n)( l·b) +γ2(l·n) 2 = l2(1+2γcosλ0 cosφ0 +γ2 cos2φ0) ∴ L = l·sqrt(1+2γcosλ0 cosφ0 +γ2 cos2φ0) (2) ∵ OA⊥AC ∴ OA = OC·cosφ0 = lcosφ0 ∴ CD =γ·OA =γlcosφ0 又∵ OB//CD ∴ ∠OCD =π-∠COB =π-λ0 ,可知 cos (π-λ0) = (OC2 +CD2 +OD2 )/(2OC·OD) = (l2 +γ2l2cos2φ0 -
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:清华材料科学基础习题及答案.doc
    链接地址:https://www.zixin.com.cn/doc/4788927.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork