分享
分销 收藏 举报 申诉 / 117
播放页_导航下方通栏广告

类型五非平稳序列的随机分析.pptx

  • 上传人:a199****6536
  • 文档编号:4589412
  • 上传时间:2024-09-30
  • 格式:PPTX
  • 页数:117
  • 大小:1.37MB
  • 下载积分:20 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    平稳 序列 随机 分析
    资源描述:
    本章结构n差分运算nARIMA模型nAuto-Regressive模型n异方差的性质n方差齐性变化n条件异方差模型5.1 差分运算n差分运算的实质n差分方式的选择n过差分差分运算的实质n差分方法是一种非常简便、有效的确定性信息提取方法nCramer分解定理在理论上保证了适当阶数的差分一定可以充分提取确定性信息n差分运算的实质是使用自回归的方式提取确定性信息 差分方式的选择n序列蕴含着显著的线性趋势,一阶差分就可以实现趋势平稳 n序列蕴含着曲线趋势,通常低阶(二阶或三阶)差分就可以提取出曲线趋势的影响 n对于蕴含着固定周期的序列进行步长为周期长度的差分运算,通常可以较好地提取周期信息 例5.1【例1.1】1964年1999年中国纱年产量序列蕴含着一个近似线性的递增趋势。对该序列进行一阶差分运算 考察差分运算对该序列线性趋势信息的提取作用 差分前后时序图n原序列时序图n差分后序列时序图例5.2n尝试提取1950年1999年北京市民用车辆拥有量序列的确定性信息差分后序列时序图n一阶差分n二阶差分例5.3n差分运算提取1962年1月1975年12月平均每头奶牛的月产奶量序列中的确定性信息 差分后序列时序图n一阶差分n1阶12步差分过差分 n足够多次的差分运算可以充分地提取原序列中的非平稳确定性信息n但过度的差分会造成有用信息的浪费 例5.4n假设序列如下 n考察一阶差分后序列和二阶差分序列 的平稳性与方差 比较n一阶差分n平稳n方差小n二阶差分(过差分)n平稳n方差大5.2 ARIMA模型nARIMA模型结构nARIMA模型性质nARIMA模型建模nARIMA模型预测n疏系数模型n季节模型ARIMA模型结构n使用场合n差分平稳序列拟合n模型结构ARIMA 模型族nd=0ARIMA(p,d,q)=ARMA(p,q)nP=0ARIMA(P,d,q)=IMA(d,q)nq=0ARIMA(P,d,q)=ARI(p,d)nd=1,P=q=0ARIMA(P,d,q)=random walk model随机游走模型(random walk)n模型结构n模型产生典故nKarl Pearson(1905)在自然杂志上提问:假如有个醉汉醉得非常严重,完全丧失方向感,把他放在荒郊野外,一段时间之后再去找他,在什么地方找到他的概率最大呢?ARIMA模型的平稳性nARIMA(p,d,q)模型共有p+d个特征根,其中p个在单位圆内,d个在单位圆上。所以当 时ARIMA(p,d,q)模型非平稳。n例5.5ARIMA(0,1,0)时序图ARIMA模型的方差齐性n 时,原序列方差非齐性nd阶差分后,差分后序列方差齐性ARIMA模型建模步骤获获得得观观察察值值序序列列平稳性平稳性检验检验差分差分运算运算YN白噪声白噪声检验检验Y分分析析结结束束N拟合拟合ARMA模型模型例5.6n对1952年1988年中国农业实际国民收入指数序列建模 一阶差分序列时序图一阶差分序列自相关图一阶差分后序列白噪声检验延迟阶数 统计量P值615.330.01781218.330.10601824.660.1344拟合ARMA模型n偏自相关图建模n定阶nARIMA(0,1,1)n参数估计n模型检验n模型显著n参数显著ARIMA模型预测n原则n最小均方误差预测原理 nGreen函数递推公式预测值例5.7n已知ARIMA(1,1,1)模型为 且n求 的95的置信区间 预测值n等价形式n计算预测值计算置信区间nGreen函数值n方差n95置信区间例5.6续:对中国农业实际国民收入指数序列做为期10年的预测 疏系数模型nARIMA(p,d,q)模型是指d阶差分后自相关最高阶数为p,移动平均最高阶数为q的模型,通常它包含p+q个独立的未知系数:n如果该模型中有部分自相关系数 或部分移动平滑系数 为零,即原模型中有部分系数省缺了,那么该模型称为疏系数模型。疏系数模型类型n如果只是自相关部分有省缺系数,那么该疏系数模型可以简记为n 为非零自相关系数的阶数n如果只是移动平滑部分有省缺系数,那么该疏系数模型可以简记为n 为非零移动平均系数的阶数n如果自相关和移动平滑部分都有省缺,可以简记为例5.8n对1917年1975年美国23岁妇女每万人生育率序列建模 一阶差分自相关图偏自相关图建模n定阶nARIMA(1,4),1,0)n参数估计n模型检验n模型显著n参数显著季节模型n简单季节模型n乘积季节模型 简单季节模型n简单季节模型是指序列中的季节效应和其它效应之间是加法关系n简单季节模型通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常如下 例5.9n拟合19621991年德国工人季度失业率序列 差分平稳n对原序列作一阶差分消除趋势,再作4步差分消除季节效应的影响,差分后序列的时序图如下 白噪声检验延迟阶数 统计量P值643.840.00011251.710.00011854.480.0001差分后序列自相关图差分后序列偏自相关图模型拟合n定阶nARIMA(1,4),(1,4),0)n参数估计模型检验残差白噪声检验参数显著性检验延迟阶数 统计量P值待估参数 统计量P值62.090.71915.480.00011210.990.3584-3.410.0001拟合效果图乘积季节模型n使用场合n序列的季节效应、长期趋势效应和随机波动之间有着复杂地相互关联性,简单的季节模型不能充分地提取其中的相关关系 n构造原理n短期相关性用低阶ARMA(p,q)模型提取n季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取n假设短期相关和季节效应之间具有乘积关系,模型结构如下 例5.10:拟合19481981年美国女性月度失业率序列 差分平稳n一阶、12步差分差分后序列自相关图差分后序列偏自相关图简单季节模型拟合结果延迟阶数拟合模型残差白噪声检验AR(1,12)MA(1,2,12)ARMA(1,12),(1,12)值P值 值P值 值P值614.580.00579.50.023315.770.00041216.420.088314.190.115817.990.0213结果拟合模型均不显著乘积季节模型拟合n模型定阶nARIMA(1,1,1)(0,1,1)12n参数估计模型检验残差白噪声检验参数显著性检验延迟阶数 统计量P值待估参数 统计量P值64.500.2120-4.660.0001129.420.400223.030.00011820.580.1507-6.810.0001结果模型显著参数均显著乘积季节模型拟合效果图5.3 Auto-Regressive模型n构造思想n首先通过确定性因素分解方法提取序列中主要的确定性信息n然后对残差序列拟合自回归模型,以便充分提取相关信息 Auto-Regressive模型结构对趋势效应的常用拟合方法n自变量为时间t的幂函数n自变量为历史观察值对季节效应的常用拟合方法n给定季节指数n建立季节自回归模型例5.6续n使用Auto-Regressive模型分析1952年1988年中国农业实际国民收入指数序列。n时序图显示该序列有显著的线性递增趋势,但没有季节效应,所以考虑建立如下结构的Auto-Regressive模型 趋势拟合n方法一:变量为时间t的幂函数n方法二:变量为一阶延迟序列值 趋势拟合效果图残差自相关检验n检验原理n回归模型拟合充分,残差的性质n回归模型拟合得不充分,残差的性质Durbin-Waston检验(DW检验)n假设条件n原假设:残差序列不存在一阶自相关性 n备择假设:残差序列存在一阶自相关性 DW统计量n构造统计量nDW统计量和自相关系数的关系DW统计量的判定结果正相关相关性待定不相关相关性待定负相关042例5.6续 n检验第一个确定性趋势模型 残差序列的自相关性。DW检验结果n检验结果n检验结论n检验结果显示残差序列高度正自相关。DW统计量的值P值0.13781.421.530.0001Durbin h检验 nDW统计量的缺陷n当回归因子包含延迟因变量时,残差序列的DW统计量是一个有偏统计量。在这种场合下使用DW统计量容易产生残差序列正自相关性不显著的误判 nDurbin h检验例5.6续n检验第二个确定性趋势模型 残差序列的自相关性。Dh检验结果n检验结果n检验结论n检验结果显示残差序列高度正自相关。Dh统计量的值P值2.80380.0025残差序列拟合n确定自回归模型的阶数n参数估计n模型检验例5.6续n对第一个确定性趋势模型的残差序列 进行拟合残差序列自相关图残差序列偏自相关图模型拟合n定阶nAR(2)n参数估计方法n极大似然估计n最终拟合模型口径例5.6n第二个AutoRegressive模型的拟合结果三个拟合模型的比较模型AICSBCARIMA(0,1,1)模型:249.3305252.4976AutoRegressive模型一:260.8454267.2891AutoRegressive模型二:250.6317253.79875.4 异方差的性质n异方差的定义n如果随机误差序列的方差会随着时间的变化而变化,这种情况被称作为异方差n异方差的影响n忽视异方差的存在会导致残差的方差会被严重低估,继而参数显著性检验容易犯纳伪错误,这使得参数的显著性检验失去意义,最终导致模型的拟合精度受影响。异方差直观诊断n残差图n残差平方图残差图n方差齐性残差图n递增型异方差残差图残差平方图n原理n残差序列的方差实际上就是它平方的期望。n所以考察残差序列是否方差齐性,主要是考察残差平方序列是否平稳 例5.11n直观考察美国1963年4月1971年7月短期国库券的月度收益率序列的方差齐性。一阶差分后残差图一阶差分后残差平方图异方差处理方法n假如已知异方差函数具体形式,进行方差齐性变化n假如不知异方差函数的具体形式,拟合条件异方差模型 5.5 方差齐性变换n使用场合n序列显示出显著的异方差性,且方差与均值之间具有某种函数关系 其中:是某个已知函数n处理思路n尝试寻找一个转换函数 ,使得经转换后的变量满足方差齐性转换函数的确定原理n转换函数 在 附近作一阶泰勒展开n求转换函数的方差n转换函数的确定常用转换函数的确定n假定n转换函数的确定例5.11续n对美国1963年4月1971年7月短期国库券的月度收益率序列使用方差齐性变换方法进行分析 n假定n函数变换对数序列时序图一阶差分后序列图白噪声检验延迟阶数LB统计量P值63.580.73371210.820.54411821.710.2452拟合模型口径及拟合效果图5.6 条件异方差模型nARCH模型nGARCH模型nGARCH模型的变体nEGARCH模型nIGARCH模型nGARCH-M模型nAR-GARCH模型ARCH模型n假定n原理n通过构造残差平方序列的自回归模型来拟合异方差函数 nARCH(q)模型结构GARCH 模型结构n使用场合nARCH模型实际上适用于异方差函数短期自相关过程 nGARCH模型实际上适用于异方差函数长期自相关过程 n模型结构GARCH模型的约束条件n参数非负 n参数有界 EGARCH模型IGARCH模型GARCH-M模型AR-GARCH模型GARCH模型拟合步骤n回归拟合n残差自相关性检验n异方差自相关性检验nARCH模型定阶n参数估计n正态性检验例5.12n使用条件异方差模型拟合某金融时间序列。回归拟合n拟合模型n参数估计n参数显著性检验nP值0.0001,参数高度显著 残差自相关性检验n残差序列DW检验结果nDurbin h=-2.6011n n拟合残差自回归模型n方法:逐步回归n模型口径异方差自相关检验nPortmantea Q检验n拉格朗日乘子(LM)检验 Portmantea Q检验n假设条件n检验统计量n检验结果n拒绝原假设n接受原假设LM检验n假设条件n检验统计量n检验结果n拒绝原假设n接受原假设例5.12残差序列异方差检验ARCH模型拟合n定阶:GARCH(1,1)n参数估计:极大似然估计n拟合模型口径:AR(2)-GARCH(1,1)模型检验n检验方法:正态性检验n假设条件:n检验统计量n检验结果n拒绝原假设n接受原假设例5.13正态性检验结果 P值0.5603 nAR(2)-GARCH(1,1)模型显著成立拟合效果图
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:五非平稳序列的随机分析.pptx
    链接地址:https://www.zixin.com.cn/doc/4589412.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork