分享
分销 收藏 举报 申诉 / 8
播放页_导航下方通栏广告

类型f分布t分布和卡方分布.doc

  • 上传人:快乐****生活
  • 文档编号:4543045
  • 上传时间:2024-09-27
  • 格式:DOC
  • 页数:8
  • 大小:308.50KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    分布
    资源描述:
    §1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t分布及F分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X1、X2、…、Xn相互独立且都服从N(0,1)时,Z= 得分布称为自由度等于n得分布,记作Z~(n),它得分布密度 p(z)= 式中得=,称为Gamma函数,且=1, =。分布就是非对称分布,具有可加性,即当Y与Z相互独立,且Y~(n),Z~(m),则Y+Z~(n+m)。 证明: 先令X1、X2、…、Xn、Xn+1、Xn+2、…、Xn+m相互独立且都服从N(0,1),再根据分布得定义以及上述随机变量得相互独立性,令 Y=X+X+…+X,Z=X+X+…+X, Y+Z= X+X+…+X+ X+X+…+X, 即可得到Y+Z~(n+m)。 2、 t分布 若X与Y相互独立,且 X~N(0,1),Y~(n),则Z = 得分布称为自由度等于n得t分布,记作Z ~ t (n),它得分布密度 P(z)= 。 请注意:t分布得分布密度也就是偶函数,且当n>30时,t分布与标准正态分布N(0,1)得密度曲线几乎重叠为一。这时, t分布得分布函数值查N(0,1)得分布函数值表便可以得到。 3、 F分布 若X与Y相互独立,且X~(n),Y~(m), 则Z=得分布称为第一自由度等于n、第二自由度等于m得F分布,记作Z~F (n, m),它得分布密度 p(z)= 请注意:F分布也就是非对称分布,它得分布密度与自由度得次序有关,当Z~F (n, m)时,~F (m ,n)。 4、 t分布与F分布得关系 若X~t(n),则Y=X~F(1,n)。 证:X~t(n),X得分布密度p(x)= 。 Y=X得分布函数F(y) =P{Y<y}=P{X<y}。 当y0时,F(y)=0,p(y)=0; 当y>0时,F(y) =P{-<X<} ==2, Y=X得分布密度p(y)=, 与第一自由度等于1、第二自由度等于n得F分布得分布密度相同,因此Y=X~F(1,n)。 为应用方便起见,以上三个分布得分布函数值都可以从各自得函数值表中查出。但就是,解应用问题时,通常就是查分位数表。有关分位数得概念如下: 4、 常用分布得分位数 1)分位数得定义 分位数或临界值与随机变量得分布函数有关,根据应用得需要,有三种不同得称呼,即α分位数、上侧α分位数与双侧α分位数,它们得定义如下: 当随机变量X得分布函数为 F(x),实数α满足0 <α<1 时,α分位数就是使P{X< xα}=F(xα)=α得数xα, 上侧α分位数就是使P{X >λ}=1-F(λ)=α得数λ, 双侧α分位数就是使P{X<λ1}=F(λ1)=0、5α得数λ1、使 P{X>λ2}=1-F(λ2)=0、5α得数λ2。 因为1-F(λ)=α,F(λ)=1-α,所以上侧α分位数λ就就是1-α分位数x 1-α; F(λ1)=0、5α,1-F(λ2)=0、5α,所以双侧α分位数λ1就就是0、5α分位数x 0、5α,双侧α分位数λ2就就是1-0、5α分位数x 1-0、5α。 2)标准正态分布得α分位数记作uα,0、5α分位数记作u 0、5α,1-0、5α分位数记作u 1-0、5α。 当X~N(0,1)时,P{X< uα}=F 0,1(uα)=α, P{X<u 0、5α}= F 0,1 (u 0、5α)=0、5α, P{X<u 1-0、5α}= F 0,1 (u 1-0、5α)=1-0、5α。 根据标准正态分布密度曲线得对称性, 当α=0、5时,uα=0; 当α<0、5时,uα<0。 uα=-u 1-α。 如果在标准正态分布得分布函数值表中没有负得分位数,则先查出 u 1-α,然后得到uα=-u 1-α。 论述如下:当X~N(0,1)时,P{X< u α}= F 0,1 (u α)=α, P{X< u 1-α}= F 0,1 (u 1-α)=1-α, P{X> u 1-α}=1- F 0,1 (u 1-α)=α, 故根据标准正态分布密度曲线得对称性,uα=-u 1-α。 例如,u 0、10=-u 0、90=-1、282, u 0、05=-u 0、95=-1、645, u 0、01=-u 0、99=-2、326, u 0、025=-u 0、975=-1、960, u 0、005=-u 0、995=-2、576。 又因为P{|X|< u 1-0、5α}=1-α,所以标准正态分布得双侧α分位数分别就是u 1-0、5α与-u 1-0、5α。 标准正态分布常用得上侧α分位数有: α=0、10,u 0、90=1、282; α=0、05,u 0、95=1、645; α=0、01,u 0、99=2、326; α=0、025,u 0、975=1、960; α=0、005,u 0、995=2、576。 3)卡平方分布得α分位数记作α(n)。 α(n)>0,当X~(n)时,P{X<α(n)}=α。 例如,0、005 (4)=0、21,0、025 (4)=0、48, 0、05 (4)=0、71,0、95 (4)=9、49, 0、975 (4)=11、1,0、995 (4)=14、9。 4)t分布得α分位数记作tα(n)。 当X~t (n)时,P{X<t α(n)}=α,且与标准正态分布相类似,根据t分布密度曲线得对称性,也有 tα(n)=-t 1-α(n),论述同uα=-u 1-α。 例如,t 0、95 (4)=2、132,t 0、975 (4)=2、776, t 0、995 (4)=4、604,t 0、005 (4)=-4、604, t 0、025 (4)=-2、776,t 0、05 (4)=-2、132。 另外,当n>30时,在比较简略得表中查不到tα(n),可用uα作为tα(n)得近似值。 5)F分布得α分位数记作Fα(n , m)。 Fα(n , m)>0,当X~F (n , m)时,P{X<Fα(n , m)}=α。 另外,当α较小时,在表中查不出Fα(n, m),须先查 F1-α(m, n),再求Fα(n, m)=。论述如下: 当X~F(m, n)时,P{X< F 1-α(m, n)}=1-α, P{>}=1-α,P{<}=α, 又根据F分布得定义,~F(n, m),P{<Fα(n, m) }=α, 因此 Fα(n, m)= 。 例如,F 0、95 (3,4)=6、59,F 0、975 (3,4)=9、98, F 0、99 (3,4)=16、7,F 0、95 (4,3)=9、12, F 0、975 (4,3)=15、1,F 0、99 (4,3)=28、7, F 0、01 (3,4)=,F 0、025 (3,4)=,F 0、05 (3,4)=。 【课内练习】 1、 求分位数①0、05(8),②0、95(12)。 2、 求分位数① t 0、05(8),② t 0、95(12)。 3、 求分位数①F0、05(7,5),②F0、95(10,12)。 4、 由u 0、975=1、960写出有关得上侧分位数与双侧分位数。 5、 由t 0、95(4)=2、132写出有关得上侧分位数与双侧分位数。 6、 若X~(4),P{X<0、711}=0、05,P{X<9、49}=0、95,试写出有关得分位数。 7、 若X~F(5,3),P{X<9、01}=0、95,Y~F(3,5),{Y<5、41}= 0、95,试写出有关得分位数。 8、 设X、X、…、X相互独立且都服从N(0,0、09)分布, 试求P{>1、44}。 习题答案:1、 ①2、73,②21、0。2、 ①-1、860,②1、782。 3、 ①,②3、37。4、 1、960为上侧0、025分位数,-1、960与1、960为双侧0、05分位数。5、 2、132为上侧0、05分位数,-2、132与2、132为双侧0、1分位数。6、 0、711为上侧0、95分位数,9、49为上侧0、05分位数,0、711与19、49为双侧0、1分位数。7、 9、01为上侧0、05分位数,5、41为上侧0、05分位数,与5、41为双侧0、1分位数,与9、01为双侧0、1分位数。8、 0、1。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:f分布t分布和卡方分布.doc
    链接地址:https://www.zixin.com.cn/doc/4543045.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork