七年级一元一次不等式组提升.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 一元 一次 不等式 提升
- 资源描述:
-
七年级一元一次不等式组提升 课题 一元一次不等式提升 课时 3 日期 5-22 教学目标 知识目标 在现实情境中认识数量间的不等关系,理解不等式的意义,并会用不等式表示不等关系; 能力目标 使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法 情感目标 进一步感受现实世界中有关数量关系的数学模型 教学重点 掌握不等式的两条基本性质,并能熟练的应用不等式的性质进行不等式的变形。 教学难点 熟练掌握较为简单的一元一次不等式的解法,并能正确地将不等式的解集表示在数轴上 教具 教学过程 一.知识梳理 思维导图 (二).知识点回顾 1.不等式 用不等号连接起来的式子叫做不等式. 常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集 不等式的解:使不等式成立的未知数的值,叫做不等式的解. 不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。 说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点) (1)基本性质1:若a<b,b<c,则 ,这个性质也叫做不等式的 。 (2)基本性质2:不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果,那么 (3)①不等式的两边都乘以(或除以)同一个 ,不等号的方向不变.如果,那么(或) ②不等式的两边都乘以(或除以)同一个 ,不等号的方向改变.如果那么(或) 说明: 1、常见不等式所表示的基本语言与含义还有: ①若a-b>0,则a大于b ; ②若a-b<0,则a小于b ; ③若a-b≥0,则a不小于b ; ④若a-b≤0,则a不大于b ; ⑤若ab>0或,则a、b同号; ⑥若ab<0或,则a、b异号。 2、任意两个实数a、b的大小关系:①a-b>Oa>b;②a-b=Oa=b;③a-b<Oa<b. 3、不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c。 4.一元一次不等式(重点) 只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0). 5.解一元一次不等式的一般步骤(重难点) 说明:解一元一次不等式与解一元一次方程步骤类似,不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 解一元一次不等式的一般步骤和根据如下: 注意事项 步骤 根据 1 去分母 不等式的基本性质3 2 去括号 单项式乘多项式法则 3 移项 不等式的基本性质2 4 合并同类项,得或 合并同类项法则 5 化系数为1,两边同除以(或乘以) 不等式的基本性质3 6.一元一次不等式组 含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 说明:判断一个不等式组是一元一次不等式组需满足两个条件: ①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同; ②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 7.一元一次不等式组的解集 一元一次不等式组中,几个不等式解集的公共部分,叫做这个一元一次不等式组的解集. 一元一次不等式组的解集通常利用数轴来确定. 8. 不等式组解集的确定方法,可以归纳为以下四种类型(设)(重难点) 不等式组 图示 解集 (同大取大) (同小取小) (大小交叉取中间) 无解(大小分离解为空) 9.解一元一次不等式组的步骤 (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 二、常见题型归纳和经典例题讲解 1.常见题型分类 定义类 1.下列不等式中,是一元一次不等式的是( ) A. B. C. D. 2.若是关于x的一元一次不等式,则该不等式的解集为 。 用不等式表示 1. 的4倍与1的差不大于2与的和的一半,得 。 2. 在数轴上与原点的距离小于8的点对应的数满足 。 变式:不等式|x|<的整数解是________.不等式|x|<1的解集是________. 数轴题 1.a,b两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a__________b; |a|__________|b|; a+b__________0 a-b__________0; a+b__________a-b; ab__________a. 2.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是( ) A、ab>0 B、 C、a-b>0 D、a+b>0 借助数轴解不等式(组): 1.解下列不等式,并把它的解集在数轴上表示出来. 2.解下列不等式组,并把它的解集在数轴上表示出来. 此类试题易错知识辨析 (1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式(或)()的形式的解集: [分类讨论思想] ①当时,(或) ②当时,(或) 3.已知ax<2a(a≠0)是关于x的不等式,那么它的解集是( ) A.x<2 B.x>-2 C.当a>0时,x<2 D.当a>0时,x<2;当a<0时,x>2 4. 若不等式(a+1)x>a+1的解集是x<1,则a必满足( ). (A)a<0 (B)a>-1 (C)a<-1 (D)a<1 变式: 若m>5,试用m表示出不等式(5-m)x>1-m的解集______. 限制条件的解 1.不等式3(x-2)≤x+4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x-的最大的整数解为( ) A.1 B.0 C.-1 D.不存在 3.当x________时,代数式的值是非负数. 不等式的性质及应用 1.若x+y>x-y,y-x>y,那么(1)x+y>0,(2)y-x<0,(3)xy≤0,(4)<0中,正确结论的序号为________。 2.下列不等式变形正确的是( ) (A)由>,得< (B)由>,得< (C)由>,得 (D)由>,得 已知解集求范围 1.关于x的方程5-a(1-x)=8x-(3-a)x的解是负数,则a的取值范围是( ) A、a<-4 B、a>5 C、a>-5 D、a<-5 变式:若关于x的方程3x+2m=2的解是正数,则m的取值范围是( ) A. B. C. D. 2.已知不等式-1>x与ax-6>5x同解,试求a的值. 变式1:不等式a(x-1)>x+1-2a的解集是x<-1,请确定a是怎样的值. 变式2:已知-4是不等式ax>9的解集中的一个值,试求a的取值范围. 3.如果关于x的不等式-k-x+6>0的正整数解为1,2,3,正整数k应取怎样的值? 4.已知关于x,y的方程组的解满足x>y,求p的取值范围. 变式:已知关于 x,y 的方程组的解满足,求p的取值范围. 含字母不等式 1.已知关于的不等式2<的解集为<,则的取值范围是( ). A.>0 B.>1 C.<0 D.<1 2.若关于的不等式的整数解共有4个,则的取值范围是( ) A. B. C. D. 3.关于x的方程的解为正实数,则k的取值范围是 . 4.若不等式组有解,则k的取值范围是( ). (A)k<2 (B)k≥2 (C)k<1 (D)1≤k<2 5.等式组的解集是x>2,则m的取值范围是( ). (A)m≤2 (B)m≥2 (C)m≤1 (D)m≥1 6.已知(x-2)2+|2x-3y-a|=0,y是正数,则a的取值范围是______. 7.k满足______时,方程组中的x大于1,y小于1. 8. 若m、n为有理数,解关于x的不等式(-m2-1)x>n. 9.已知方程组的解满足x+y<0,求m的取值范围. 强化练习题 1.当时,求关于x的不等式的解集. 2.当k取何值时,方程组的解x,y都是负数. 3.已知中的x,y满足0<y-x<1,求k的取值范围. 4.已知a是自然数,关于x的不等式组的解集是x>2,求a的值. 5.关于x的不等式组的整数解共有5个,求a的取值范围. 6.k取哪些整数时,关于x的方程5x+4=16k-x的根大于2且小于10? 7.已知关于x,y的方程组的解为正数,求m的取值范围. 8.若关于x的不等式组只有4个整数解,求a的取值范围. 9.如果不等式组的解集是,那么的值为 . 10.如果一元一次不等式组的解集为.则的取值范围是( ) A. B. C. D. 11.若不等式组有解,则a的取值范围是( ) A. B. C. D. 一元一次不等式(组)的应用 用一元一次不等式组解决实际问题的步骤: ⑴审题,找出不等关系; ⑵设未知数; ⑶列出不等式; ⑷求出不等式的解集; ⑸找出符合题意的值; ⑹作答。 一、分配问题: 1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 2.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 3.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。 1、 如果有x间宿舍,那么可以列出关于x的不等式组: 2、 可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗? 二、速度、时间问题 1 爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长? 2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟? 三、工程问题 1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土? 2.某同学要在4小时内,从甲地赶到相距15公里的乙地,他从甲地出发后,以每小时3公里的速度走了1小时,以后至少平均每小时要走多少公里,才能按计划到达乙地? 四、价格问题 1.商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。 (1)试求该商品的进价和第一次的售价; (2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元? 2.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,该校如何选择,才能使费用较少? 3.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000 元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少? 五、其他问题 1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数. 2.一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题? 六、方案选择与设计 1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表: 原料 维生素C及价格 甲种原料 乙种原料 维生素C/(单位/千克) 600 100 原料价格/(元/千克) 8 4 现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元, (1)设需用千克甲种原料,写出应满足的不等式组。 (2)按上述的条件购买甲种原料应在什么范围之内? 2.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问: (1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的? (2)按所需投入资金的多少讨论方案一和方案二哪个获利多。 3.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该 园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。 (1) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。 (2) 求一年中进入该园林至少多少时,购买A类年票才比较合算。 学生 教师 15 / 15展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




七年级一元一次不等式组提升.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4532557.html