分享
分销 收藏 举报 申诉 / 14
播放页_导航下方通栏广告

类型2010年山东省高考数学试卷(文科)答案与解析.doc

  • 上传人:快乐****生活
  • 文档编号:4322860
  • 上传时间:2024-09-06
  • 格式:DOC
  • 页数:14
  • 大小:209.51KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2010 山东省 高考 数学试卷 文科 答案 解析
    资源描述:
    2010年山东省高考数学试卷(文科) 参考答案与试题解析   一、选择题(共12小题,每小题5分,满分60分) 1.(5分)(2010•山东)已知全集U=R,集合M={x|x2﹣4≤0},则∁UM=(  ) A.{x|﹣2<x<2} B.{x|﹣2≤x≤2} C.{x|x<﹣2或x>2} D.{x|x≤﹣2或x≥2} 【考点】补集及其运算.菁优网版权所有 【专题】集合. 【分析】由题意全集U=R,集合M={x|x2﹣4≤0},然后根据交集的定义和运算法则进行计算. 【解答】解:因为M={x|x2﹣4≤0}={x|﹣2≤x≤2},全集U=R, 所以CUM={x|x<﹣2或x>2},故选C. 【点评】本题考查集合的补集运算、二次不等式的解法等基础知识,属基础题.   2.(5分)(2010•山东)已知,其中i为虚数单位,则a+b=(  ) A.﹣1 B.1 C.2 D.3 【考点】复数代数形式的混合运算.菁优网版权所有 【专题】数系的扩充和复数. 【分析】先化简复数,再利用复数相等,解出a、b,可得结果. 【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1. 故选B. 【点评】本题考查复数相等的意义、复数的基本运算,是基础题.   3.(5分)(2010•山东)函数f(x)=log2(3x+1)的值域为(  ) A.(0,+∞) B.[0,+∞) C.(1,+∞) D.[1,+∞) 【考点】函数的值域.菁优网版权所有 【专题】函数的性质及应用. 【分析】函数的定义域为R,结合指数函数性质可知3x>0恒成立,则真数3x+1>1恒成立,再结合对数函数性质即可求得本题值域. 【解答】解:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R. 因此,该函数的定义域为R, 原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数. 由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的. 根据指数函数的性质可知,3x>0,所以,3x+1>1, 所以f(x)=log2(3x+1)>log21=0, 故选A. 【点评】本题考查了对数复合函数的单调性,复合函数的单调性知识点,高中要求不高,只需同学们掌握好“同増异减“原则即可;本题还考查了同学们对指数函数性质(如:3x>0)的掌握,这是指数函数求定义域和值域时常用知识.   4.(5分)(2010•山东)在空间,下列命题正确的是(  ) A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行 C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行 【考点】空间中直线与平面之间的位置关系.菁优网版权所有 【专题】空间位置关系与距离. 【分析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理,可以很容易得出答案. 【解答】解:平行直线的平行投影重合,还可能平行,A错误. 平行于同一直线的两个平面平行,两个平面可能相交,B错误. 垂直于同一平面的两个平面平行,可能相交,C错误. 故选D. 【点评】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.   5.(5分)(2010•山东)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=(  ) A.﹣3 B.﹣1 C.1 D.3 【考点】奇函数.菁优网版权所有 【专题】函数的性质及应用. 【分析】首先由奇函数性质f(0)=0求出f(x)的解析式,然后利用定义f(﹣x)=﹣f(x)求f(﹣1)的值. 【解答】解:因为f(x)为定义在R上的奇函数, 所以f(0)=20+2×0+b=0, 解得b=﹣1, 所以当x≥0时,f(x)=2x+2x﹣1, 又因为f(x)为定义在R上的奇函数, 所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3, 故选A. 【点评】本题考查奇函数的定义f(﹣x)=﹣f(x)与基本性质f(0)=0(函数有意义时).   6.(5分)(2010•山东)在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为(  ) A.92,2 B.92,2.8 C.93,2 D.93,2.8 【考点】众数、中位数、平均数;极差、方差与标准差.菁优网版权所有 【专题】概率与统计. 【分析】平均数就将剩余5个数的和除以5即可得到;方差就是将数据代入方差公式 s2=[(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(xn﹣)2]即可求得. 【解答】解:由题意知,所剩数据为90,90,93,94,93, 所以其平均值为90+(3+4+3)=92; 方差为(22×2+12×2+22)=2.8, 故选B. 【点评】本题考查平均数与方差的求法,属基础题.   7.(5分)(2010•山东)设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的(  ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【考点】等比数列.菁优网版权所有 【专题】等差数列与等比数列. 【分析】首项大于零是前提条件,则由“q>1,a1>0”来判断是等比数列{an}是递增数列. 【解答】解:若已知a1<a2,则设数列{an}的公比为q, 因为a1<a2,所以有a1<a1q,解得q>1,又a1>0, 所以数列{an}是递增数列;反之,若数列{an}是递增数列, 则公比q>1且a1>0,所以a1<a1q,即a1<a2, 所以a1<a2是数列{an}是递增数列的充分必要条件. 故选C 【点评】本题考查等比数列及充分必要条件的基础知识,属保分题.   8.(5分)(2010•山东)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为(  ) A.13万件 B.11万件 C.9万件 D.7万件 【考点】利用导数求闭区间上函数的最值.菁优网版权所有 【专题】导数的概念及应用. 【分析】由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,比较函数值的大小,求出最大值即最大年利润的年产量. 【解答】解:令导数y′=﹣x2+81>0,解得0<x<9; 令导数y′=﹣x2+81<0,解得x>9, 所以函数y=﹣x3+81x﹣234在区间(0,9)上是增函数, 在区间(9,+∞)上是减函数, 所以在x=9处取极大值,也是最大值. 故选:C. 【点评】本题考查导数在实际问题中的应用,属基础题.   9.(5分)(2010•山东)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(  ) A.x=1 B.x=﹣1 C.x=2 D.x=﹣2 【考点】抛物线的简单性质.菁优网版权所有 【专题】圆锥曲线的定义、性质与方程. 【分析】先假设A,B的坐标,根据A,B满足抛物线方程将其代入得到两个关系式,再将两个关系式相减根据直线的斜率和线段AB的中点的纵坐标的值可求出p的值,进而得到准线方程. 【解答】解:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2, 两式相减得:(y1﹣y2)(y1+y2)=2p(x1﹣x2), 又因为直线的斜率为1,所以=1, 所以有y1+y2=2p,又线段AB的中点的纵坐标为2, 即y1+y2=4,所以p=2,所以抛物线的准线方程为x=﹣=﹣1. 故选B. 【点评】本题考查抛物线的几何性质、直线与抛物线的位置关系等基础知识.   10.(5分)(2010•山东)观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=(  ) A.f(x) B.﹣f(x) C.g(x) D.﹣g(x) 【考点】奇函数;归纳推理.菁优网版权所有 【专题】函数的性质及应用. 【分析】首先由给出的例子归纳推理得出偶函数的导函数是奇函数, 然后由g(x)的奇偶性即可得出答案. 【解答】解:由给出的例子可以归纳推理得出: 若函数f(x)是偶函数,则它的导函数是奇函数, 因为定义在R上的函数f(x)满足f(﹣x)=f(x), 即函数f(x)是偶函数, 所以它的导函数是奇函数,即有g(﹣x)=﹣g(x), 故选D. 【点评】本题考查函数奇偶性及类比归纳推理能力.   11.(5分)(2010•山东)函数y=2x﹣x2的图象大致是(  ) A. B. C. D. 【考点】函数的图象与图象变化.菁优网版权所有 【专题】函数的性质及应用. 【分析】充分利用函数图象中特殊点加以解决.如函数的零点2,4;函数的特殊函数值f(﹣2)符号加以解决即可. 【解答】解:因为当x=2或4时,2x﹣x2=0,所以排除B、C; 当x=﹣2时,2x﹣x2=,故排除D, 所以选A. 【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.   12.(5分)(2010•山东)定义平面向量之间的一种运算“⊙”如下:对任意的,令,下面说法错误的是(  ) A.若与共线,则⊙=0 B.⊙=⊙ C.对任意的λ∈R,有⊙=⊙) D.(⊙)2+()2=||2||2 【考点】平面向量数量积的运算.菁优网版权所有 【专题】平面向量及应用. 【分析】根据题意对选项逐一分析.若与共线,则有,故A正确; 因为,而,所以有,故选项B错误, 对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确, 对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=||2||2,D正确; 得到答案. 【解答】解:对于A,若与共线,则有,故A正确; 对于B,因为,而,所以有,故选项B错误, 对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确, 对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=||2||2,D正确; 故选B. 【点评】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.   二、填空题(共4小题,每小题4,满分16分) 13.(4分)(2010•山东)执行如图所示的程序框图,若输入x=10,则输出y的值为  . 【考点】程序框图.菁优网版权所有 【专题】算法和程序框图. 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果. 【解答】解:程序在运行过程中各变量的值如下表示: x y 是否继续循环 循环前 10∥ 第一圈 10 4 是 第二圈 4 1 是 第三圈 1﹣是 第四圈﹣﹣否 故输出y的值为. 故答案为: 【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.   14.(4分)(2010•山东)已知x,y∈R+,且满足,则xy的最大值为 3 . 【考点】基本不等式.菁优网版权所有 【专题】不等式的解法及应用. 【分析】本题为利用基本不等式求最值,可直接由条件出发,求解. 【解答】解:因为x>0,y>0,所以(当且仅当,即x=,y=2时取等号), 于是,,xy≤3. 故答案为:3 【点评】本题主要考查了用基本不等式解决最值问题的能力,属基本题.   15.(4分)(2010•山东)△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,sinB+cosB=,则角A的大小为  . 【考点】同角三角函数基本关系的运用;二倍角的正弦;正弦定理.菁优网版权所有 【专题】解三角形. 【分析】由条件由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,根据三角形的内角和定理得到0<B<π得到B的度数.利用正弦定理求出A即可. 【解答】解:由sinB+cosB=得1+2sinBcosB=2,即sin2B=1, 因为0<B<π,所以B=45°,b=2,所以在△ABC中, 由正弦定理得:, 解得sinA=,又a<b,所以A<B=45°,所以A=30°. 故答案为 【点评】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了同学们解决三角形问题的能力.   16.(4分)(2010•山东)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为 (x﹣3)2+y2=4 . 【考点】直线与圆的位置关系.菁优网版权所有 【专题】直线与圆. 【分析】利用圆心,半径(圆心和点(1,0)的距离)、半弦长、弦心距的关系,求出圆心坐标,然后求出圆C的标准方程. 【解答】解:由题意,设圆心坐标为(a,0),则由直线l:y=x﹣1被该圆所截得 的弦长为得,,解得a=3或﹣1, 又因为圆心在x轴的正半轴上,所以a=3,故圆心坐标为(3,0), 又已知圆C过点(1,0),所以所求圆的半径为2,故圆C的标准方程为(x﹣3)2+y2=4. 故答案为:(x﹣3)2+y2=4. 【点评】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力.   三、解答题(共6小题,满分74分) 17.(12分)(2010•山东)已知函数f(x)=sin(π﹣ωx)cosωx+cos2ωx(ω>0)的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间上的最小值. 【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.菁优网版权所有 【专题】三角函数的求值;三角函数的图像与性质. 【分析】(1)本小题主要考查综合运用三角函数公式、三角函数的性质,进行运算、变形、转换和求解的能力. (2)要求三角函数的有关性质的问题,题目都要变形到y=Asin(ωx+φ)的形式,变形时利用诱导公式和二倍角公式逆用. 【解答】解:(Ⅰ)∵f(x)=sin(π﹣ωx)cosωx+cos2ωx, ∴f(x)=sinωxcosωx+ =sin2ωx+cos2ωx+ =sin(2ωx+)+ 由于ω>0,依题意得, 所以ω=1; (Ⅱ)由(Ⅰ)知f(x)=sin(2x+)+, ∴g(x)=f(2x)=sin(4x+)+ ∵0≤x≤时,≤4x+≤, ∴≤sin(4x+)≤1, ∴1≤g(x)≤, g(x)在此区间内的最小值为1. 【点评】利用同角三角函数间的关系式可以化简三角函数式(1)化简的标准:第一,尽量使函数种类最少,次数最低,而且尽量化成积的形式;第二,能求出值的要求出值;第三,根号内的三角函数式尽量开出.   18.(12分)(2010•山东)已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn. (Ⅰ)求an及Sn; (Ⅱ)令(n∈N*),求数列{bn}的前n项和Tn. 【考点】等差数列的通项公式;等差数列的前n项和;数列的求和.菁优网版权所有 【专题】等差数列与等比数列. 【分析】(1)根据等差数列所给的项和项间的关系,列出关于基本量的方程,解出等差数列的首项和公差,写出数列的通项公式和前n项和公式. (2)根据前面做出的数列构造新数列,把新数列用裂项进行整理变为两部分的差,合并同类项,得到最简结果,本题考查的是数列求和的典型方法﹣﹣裂项法,注意解题过程中项数不要出错. 【解答】解:(Ⅰ)设等差数列{an}的公差为d, ∵a3=7,a5+a7=26, ∴有, 解得a1=3,d=2, ∴an=3+2(n﹣1)=2n+1; Sn==n2+2n; (Ⅱ)由(Ⅰ)知an=2n+1, ∴bn====, ∴Tn===, 即数列{bn}的前n项和Tn=. 【点评】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键.是每年要考的一道高考题目.   19.(12分)(2010•山东)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率. 【考点】互斥事件的概率加法公式;互斥事件与对立事件.菁优网版权所有 【专题】概率与统计. 【分析】(1)从袋中随机抽取两个球,可能的结果有6种,而取出的球的编号之和不大于4的事件有两个,1和2,1和3,两种情况,求比值得到结果. (2)有放回的取球,根据分步计数原理可知有16种结果,满足条件的比较多不好列举,可以从他的对立事件来做. 【解答】解:(1)从袋中随机抽取两个球,可能的结果有6种, 而取出的球的编号之和不大于4的事件有两个,1和2,1和3, ∴取出的球的编号之和不大于4的概率P= (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中, 然后再从袋中随机取一个球,该球的编号为n, 所有(m,n)有4×4=16种, 而n≥m+2有1和3,1和4,2和4三种结果, ∴P=1﹣=. 【点评】本小题主要考查古典概念、对立事件的概率计算,考查学生分析问题、解决问题的能力.能判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.   20.(12分)(2010•山东)如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA. (Ⅰ)求证:平面EFG⊥平面PDC; (Ⅱ)求三棱锥P﹣MAB与四棱锥P﹣ABCD的体积之比. 【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.菁优网版权所有 【专题】空间位置关系与距离;立体几何. 【分析】(I)欲证平面EFG⊥平面PDC,根据面面垂直的判定定理可知在平面EFG内一直线与平面PDC垂直,而根据线面垂直的判定定理可知GF⊥平面PDC,GF∈平面EFG,满足定理条件; (II)不妨设MA=1,求出PD=AD,得到Vp﹣ABCD=S正方形ABCD,求出PD,根据DA⊥面MAB,所以DA即为点P到平面MAB的距离,根据三棱锥的体积公式求出体积得到V P﹣MAB:V P﹣ABCD的比值. 【解答】解:(I)证明:由已知MA⊥平面ABCD,PD∥MA, 所以PD⊥平面ABCD 又BC⊂平面ABCD, 因为四边形ABCD为正方形, 所以PD⊥BC 又PD∩DC=D, 因此BC⊥平面PDC 在△PBC中,因为G、F分别是PB、PC中点, 所以GF∥BC 因此GF⊥平面PDC 又GF⊂平面EFG, 所以平面EFG⊥平面PDC; (Ⅱ)因为PD⊥平面ABCD, 四边形ABCD为正方形,不妨设MA=1, 则PD=AD=2,所以Vp﹣ABCD=S正方形ABCD,PD= 由于DA⊥面MAB的距离 所以DA即为点P到平面MAB的距离, 三棱锥Vp﹣MAB=××1×2×2=, 所以VP﹣MAB:VP﹣ABCD=1:4. 【点评】本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力.   21.(12分)(2010•山东)已知函数. (Ⅰ)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)当时,讨论f(x)的单调性. 【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.菁优网版权所有 【专题】导数的综合应用. 【分析】(Ⅰ)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. (Ⅱ)利用导数来讨论函数的单调性即可,具体的步骤是:(1)确定 f(x)的定义域;(2)求导数fˊ(x);(3)在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定函数的单调区间.若在函数式中含字母系数,往往要分类讨论. 【解答】解:(Ⅰ)当a=﹣1时,f(x)=lnx+x+﹣1,x∈(0,+∞), 所以f′(x)=+1﹣,因此,f′(2)=1, 即曲线y=f(x)在点(2,f(2))处的切线斜率为1, 又f(2)=ln2+2,y=f(x)在点(2,f(2))处的切线方程为y﹣(ln2+2)=x﹣2, 所以曲线,即x﹣y+ln2=0; (Ⅱ)因为, 所以=,x∈(0,+∞), 令g(x)=ax2﹣x+1﹣a,x∈(0,+∞), (1)当a=0时,g(x)=﹣x+1,x∈(0,+∞), 所以,当x∈(0,1)时,g(x)>0, 此时f′(x)<0,函数f(x)单调递减; (2)当a≠0时,由g(x)=0, 即ax2﹣x+1﹣a=0,解得x1=1,x2=﹣1. ①当a=时,x1=x2,g(x)≥0恒成立, 此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减; ②当0<a<时, x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减, x∈(1,﹣1)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增, x∈(﹣1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减; ③当a<0时,由于﹣1<0, x∈(0,1)时,g(x)>0,此时f′(x)<0函数f(x)单调递减; x∈(1,+∞)时,g(x)<0此时函数f′(x)>0函数f(x)单调递增. 综上所述: 当a≤0时,函数f(x)在(0,1)上单调递减; 函数f(x)在(1,+∞)上单调递增 当a=时,函数f(x)在(0,+∞)上单调递减 当0<a<时,函数f(x)在(0,1)上单调递减; 函数f(x)在(1,﹣1)上单调递增; 函数f(x)在(﹣1,+∞)上单调递减. 【点评】本小题主要考查导数的概念、利用导数研究函数的单调性、导数的几何意义和利用导数研究函数性质的能力,考查分类讨论思想、数形结合思想和等价变换思想.   22.(14分)(2010•山东)如图,已知椭圆过点.,离心率为,左、右焦点分别为F1、F2.点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点. (1)求椭圆的标准方程; (2)设直线PF1、PF2的斜线分别为k1、k2.①证明:;②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由. 【考点】直线与圆锥曲线的综合问题.菁优网版权所有 【专题】圆锥曲线的定义、性质与方程. 【分析】(1)利用椭圆过已知点和离心率,联立方程求得a和b,则椭圆的方程可得. (2)①把直线PF1、PF2的方程联立求得交点的坐标的表达式,代入直线x+y=2上,整理求得,原式得证. ②设出A,B,C,D的坐标,联立直线PF1和椭圆的方程根据韦达定理表示出xA+xB和xAxB,进而可求得直线OA,OB斜率的和与CO,OD斜率的和,由kOA+k)B+kOC+kOD=0推断出k1+k2=0或k1k2=1,分别讨论求得p. 【解答】解:(1)∵椭圆过点,, ∴, 故所求椭圆方程为; (2)①由于F1(﹣1,0)、F2(1,0),PF1,PF2的斜率分别是k1,k2,且点P不在x轴上, 所以k1≠k2,k1≠0,k2≠0. 又直线PF1、PF2的方程分别为y=k1(x+1),y=k2(x﹣1), 联立方程解得, 所以,由于点P在直线x+y=2上, 所以, 故 ②设A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),联立直线PF1和椭圆的方程得, 化简得(2k12+1)x2+4k12x+2k12﹣2=0, 因此, 所以, 同理可得:, 故由kOA+kOB+kOC+kOD=0得k1+k2=0或k1k2=1, 当k1+k2=0时,由(1)的结论可得k2=﹣2,解得P点的坐标为(0,2) 当k1k2=1时,由(1)的结论可得k2=3或k2=﹣1(舍去), 此时直线CD的方程为y=3(x﹣1)与x+y=2联立得x=,, 所以, 综上所述,满足条件的点P的坐标分别为,P(0,2). 【点评】本题主要考查了直线与圆锥曲线的关系的综合问题,椭圆的简单性质.考查了学生综合推理能力,基本计算能力. 14
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2010年山东省高考数学试卷(文科)答案与解析.doc
    链接地址:https://www.zixin.com.cn/doc/4322860.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork