分享
分销 收藏 举报 申诉 / 11
播放页_导航下方通栏广告

类型数据包络分析法在管理决策运用中的实际案例分析.doc

  • 上传人:丰****
  • 文档编号:4132313
  • 上传时间:2024-07-31
  • 格式:DOC
  • 页数:11
  • 大小:123.54KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数据 包络 分析 管理 决策 运用 中的 实际 案例
    资源描述:
    决策理论与方法课程报告 数据包络分析法在管理决策运用中的实际案例分析 目 录 第一章 数据包络分析简介 1 第二章 数据包络分析法模型 1 2。1 基础知识 1 2。2 C2R模型 2 2。3 模型求解方法 4 第三章 数据包络分析法案例 6 3。1 工程建设项目评标方法 6 3。2 环保项目评价 7 3。3 科研评价 8 第四章 总结 11 4.1 DEA方法的优点 11 4.2 DEA方法的缺陷 12 参考文献 12 第一章 数据包络分析简介 数据包络分析(Data Envelopment Analysis),简称DEA,是由美国著名运筹学家A.Charnes等人于1978年首先提出的.是使用数学规划模型评价具有多个输入、多个输出的。部门"或“单位”(称为决策单元,简记DMU)间的相对有效性(称为DEA有效)的一种非参数的统计估计方法。数学、经济学和管理科学是这一学科形成的柱石,优化是其研究的主要方法,而DEA的广泛应用是它能得以迅速发展的动力。 数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具方法,常被用来衡量拥有相同目标的运营单位的相对效率.这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。 但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。如运营单位有多种投入要素(员工规模、工资数目、运作时间和广告投入),同时也有多种产出要素(利润、市场份额和成长率).在这些情况下,很难让管理者知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低. DEA方法在处理多输入,特别是多输出问题能力上具有绝对优势. 第二章 数据包络分析法模型 2。1 基础知识 (1)决策单元(DMU):我们把具有相同类型的部门、企业或者同一企业不同时期的相对效率进行评价,这些部门、企业或时期称为。评价的依据是决策单元的一组投入指标数据和一组产出指标数据. (2)投入指标:指决策单元在经济和管理活动中需要耗费的经济量,例如固定资产原值、流动资金平均余额、自筹技术开发资金、职工人数、占用土地等。 (3)产出指标:指决策单元在某种投入要素组合下,表明经济活动产生成效的经济量,例如总产值、销售收入、利税总额、产品数量、劳动生产率、产值利润率等. (4)指标数据:指实际观测结果,根据投入指标数据和产出指标数据评价决策单元的相对效率,即评价部门、企业或时期之间的相对有效性。 2.2 C2R模型 设有n个部门(企业),称为n个决策单元,每个决策单元都有p种投入和q种产出,分别用不同的经济指标表示。这样,由n个决策单元构成的多指标投入和多指标产出的评价系统,可以做如下表示: 设:n个决策单元(=j=1,2,3,。。.,n),每个决策单元有相同的p项投入(输入)(i=1,2,。..,p) ,每个决策单元有相同的 q项产出(输出)(r = 1,2,.。。,q). xij——第j决策单元的第i项投入 yij——第j决策单元的第r项产出 (1) 即:效率指标hk等于产出加权之和除以投入加权之和,表示第k个决策单元多指标投入和多指标产出所取得的经济效率。可以适当地选择权系数u、v,使得hk1£,建立评价第k0个决策单元相对有效性的C2R模型. 设第k0个决策单元的投入向量和产出向量分别为: 效率指标,在效率评价指标的约束条件下,选择一组最优权系数 U和V,使得h0达到最大值,构造优化模型(分式规划) (2) 上述模型中xik,yjk为已知数(可由历史资料或预测数据得到),vi,uj为变量。模型的含义是以权系数vi,uj为变量,以h0所有决策单元的效率指标为约束,以第k0个决策单元的效率指数为目标.即评价第k0个决策单元的生产效率是否有效,是相对于其他所有决策单元而言的。 记,则有矩阵形式(P) (3) 作Charnes—Cooper变换,转化为一个等价的线性规划模型。 故将模型转化为 其对偶问题为 写成向量形式 2.3 模型求解方法 在评价决策单元是否为DEA有效时,如果利用原线性规划问题: 需要判断是否存在最优解,满足: 利用对偶线性规划 需要判断它的所有最优解都满足: 无论是对于线性规划还是对于对偶规划,这都是不容易做到的。因此Charnes 和Cooper引入了非阿基米德无穷小的概念,利用线性规划方法求解。去判断决策单元的DEA有效性。 Charnes通过引入具有非阿基米德无穷小量ε,从而可以利用单纯形方法求解线性规划问题,来判定决策单元的DEA有效性,成功解决了计算和技术上的困难,建立了具有非阿基米德无穷小量ε的C2R模型.令ε是非阿基米德无穷小量,它是一个小于任何正数、且大于零的数。 最优解为 设模型(D)的最优解为l0、s0-、s0+、q0,分三种情况进一步讨论: ①q0 = 1,且 s0- = 0、s0+ = 0 :决策单元k0为DEA有效。 其经济意义是:决策单元k0的生产活动(X0,Y0)同时为技术有效和规模有效. 所谓技术有效,是指对于生产活动(X0,Y0),从技术角度来看,资源获得了充分利用,投入要素达到最佳组合,取得了最大的产出效果,效率评价指标 h0=Vp=VD=q0 = 1 。 ②q0 = 1,但至少有某个 si0— >0 或者至少有某个 sj0+ >0:决策单元k0为弱DEA有效。 其经济意义是:决策单元 k0 不是同时技术有效和规模收益有效。 若某个si0— >0,表示第 i 种投入指标有 si0— 没有充分利用; 若某个sj0+ >0,表示第 j 种产出指标与最大产出值尚有 sj0+ 的不足. ③q0< 1:决策单元k0不是DEA有效. 其经济意义是:决策单元 k0 的生产活动(X0,Y0)既不是技术效率最佳,也不是规模收益最佳。 第三章 数据包络分析法案例 3.1 工程建设项目评标方法[1] 假定一待建工程项目, 对应的技术、经济综合指标设为X1 , X2 , …, Xm ;Y1 ,Y2 , … ,Ys ;其中Xi 表示负向指标,Yr 表示正向指标.有n个投标商, 用xij表示第j 个承包商的第i 个负向指标值, yrj表示第j 个承包商的第r个正向指标值(i =1 , 2 , … , m;r =1 ,2 , 。。., s ;j =1 , 2 , 。。。, n), 以负向指标做为输入指标, 正向指标做为输出指标。 现有6个承包商进行投标,其各项指标如下: 表3。1 承包商各项指标 承包商 年生产能力 投标能力 履约保险系数 净资产负债率(%) 收益利息率(%) 资产利润率(%) 可获信贷(万元) 运营资本收益率(%) 1 1.8 3。2 2。5 43.7 5。2 94.38 1000 69087 2 1.6 2.8 2。1 38。3 4。5 89。28 800 67026 3 2。8 6。1 5。1 120。5 3。0 54。04 2000 39054 4 2。5 5。4 4。0 140。7 2.5 51。23 1500 30。21 5 1。3 2。2 1。8 225。6 2.0 29。59 600 23.31 6 1。4 1。9 1。5 214。3 1。9 14.35 500 18.95 各指标中, 净资产负债率和收益利息率为负向指标, 其余为正向指标.DEA 评价结论与指标量纲无关, 不必对上述各指标进行无量纲化处理。现以净资产负债率X1 、收益利息率X2 为输入指标, 以年生产能力Y1 、投标能力Y2 、履约保险系数Y3 、资产利润率Y4 、可获信贷Y5 、运营资本收益率Y6 为输出指标, 利用工程建设项目评标模型, 由MATLAB6 .1 软件中的线性规划程序可分别计算出6 个承包商的效率值和优先序, 结果于表3。2。 表3。2 各承包商模型效率值 承包商 承包商1 承包商2 承包商3 承包商4 承包商5 承包商6 模型效率值 1.00 1。00 1。00 1。00 0。8520 0.7749 排序 1 1 1 1 2 3 发现求得的承包商1、2、3、4效率值均为1,无法进行排序,故引入一个虚拟决策单元,替代评价决策单元,令 称Xn+1和Yn+1为输入、输出的决策单元,并且作为这n个承包商决策单元的虚拟决策单元,使原来的各个决策单元相对这个决策单元变得非有效,这样就达到了进一步比较各决策单元差异程度的目的。把虚拟决策单元并入到实际的n个决策单元中,就可得到基于虚拟决策单元的工程建设项目评标的DEA模型: 可以验证这一模型(P’)的相关DEA理论都是成立的[2].于是利用该模型进行计算得到下表 表3。3 P’模型下各承包商效率计算 承包商 承包商1 承包商2 承包商3 承包商4 承包商5 承包商6 P'模型效率值 0。8764 0。9626 0。6333 0。6786 0.4411 0。5000 排序 2 1 4 3 6 5 得到各承包商的优劣顺序依次为:2 , 1 , 4 , 3 , 6 ,5 。故应当优先选择承包商2。 3。2环保项目评价[3] 现有10个环境保护项目——燃烧固体废弃物发电的项目,需要对其进行有效性的评价。各项目的设备、工艺水平相当,其他项目指标如下表 表3。4 环保项目指标 项目 煤炭 资金 供燃烧的废物 输出电能 飞灰 项目1 87。27 19040.43 5432。61 13257。66 2651.75 项目2 54.96 11232.17 4789。72 12378.54 1845。02 项目3 85。50 18499.92 4935。70 13108.85 2563.64 项目4 96。93 18053。16 9170。08 16067.43 2432.37 项目5 97.42 18074。18 8831.54 16249.79 2752.78 项目6 65.12 9687。73 6811。12 15472。15 1737。60 项目7 69.09 11584.39 8669。44 15763.83 1986。96 项目8 68。86 12314.16 4568。92 10492。73 2081。35 项目9 76。65 10432。53 9347。38 16532.11 2112.51 项目10 73.21 14416。35 7392.43 11230.65 2347。46 于是将输入选定为煤炭(x1)、资金(x2)、供燃烧的废物(x3),输出选定为输出电能(y1)、飞灰(y2)。将每一个项目当做一个决策单元,运用C2R模型计算出不同环保项目有效性数值,如下表 表3.5 各项目相对效率值 项目 项目1 项目2 项目3 项目4 项目5 项目6 项目7 项目8 项目9 项目10 相对效率值 0.7048 1。0000 0。7046 0。7750 0。7573 1。0000 1。0000 0。8598 1。0000 0。8908 从上表中,可以发现项目2、6、7、9有效性均为1,说明这些项目是相对有效率的,而项目1、3、4、5、8、10有效性均小于1,说明是非DEA有效的,需要改进或者加强控制。 3.3 科研评价[4] 四家体育科研所在三年期间有不同的资源投入(平均值) 和不同的产出(省部级课题、发表专著、期刊文章和培养研究生人数) 见下表3。6。 表3。6 四家体科所的投入和产出表 项目 国家体科所 北京体科所 湖北体科所 北京体育大学体科所 投入 投入资金(万元) 28。52 16.23 27。57 21。04 高学历(人) 12。38 12。8 34。85 15。41 高职称(人) 10.67 6.42 10。41 10。40 产出 课题(篇) 4。81 3.46 3.67 3.32 专著(部) 4。31 2.71 4.59 5.65 期刊文章(篇) 25.30 14.80 17。50 16。0 培养学生(人) 4.10 2.70 2。30 8。40 模型变量:A, B, C , D 分别为各科研所的权重;E 为待定的比例系数, 求Min :E 约束条件之一:产出约束, 组合体科所产出≥待评价体科所的产出 4。81A +3。46B+3.67C +3。32D≥3.46 4。31A +2。71B+4。59C +5。65D≥2。71 25.3A +14。8B+17。5C +16。0D≥14。8 4。1A+2。7B+2.3C+8。4D≥2。7 约束条件之二:投入约束, 组合体科所投入≤待评价体科所的投入*待定比例系数 28。52A+16。23B+27。57C +21.04D≤16.23E 12.38A+12。87B+34.85C +15。41D≤12。87E 10.67A+6。42B+10.41C +10.4D≤6。42E 约束条件之三:权重之和为1 A+B +C +D=1 A, B, C , D, E≥0 通过计算得出结果如下表3。7、表3。8 表3。7 北京体科所计算结果 投入 国家 北京 湖北 北体大 组合 Suplus 资金 28.5552 16。23 27。57 21。04 0。00 0。00 高学历 12.38 12.87 34.85 15。41 0。00 0。00 高职称 10.67 6。42 10。41 10。40 0。00 0.00 产出 课题 4。81 3。46 3。6 3.32 3。46 0。00 专著 4。31 2.71 4。59 5。65 2。71 0.00 期刊文章 25。30 14.80 17。50 16。0 14。80 培养学生 4.10 2.70 2.30 8。40 2。70 权重 0.00 1。00 0。00 0。00 1 目标函数 1 表3。8 湖北体科所计算结果 投入 国家 北京 湖北 北体大 组合 Suplus 资金 28.5552 16。23 27。57 21。04 0。00 3。58 高学历 12。38 12。87 34.85 15。41 0。00 17.44 高职称 10。67 6.42 10。41 10.40 0。00 0.00 产出 课题 4.81 3。46 3。6 3.32 3。46 0。00 专著 4。31 2。71 4。59 5。65 2。71 0.00 期刊文章 25。30 14.80 17。50 16。0 14.80 0。16 培养学生 4。10 2。70 2。30 8。40 2。70 3。70 权重 0。212 0。260 0。00 0.527 1 目标函数 0.90524 从表3。7中可看出目标函数值为1,表明北京体科所位于有效边界上,其用适量资源投入,获得较高的产出,工作效率是相对有效的。 从表3。8可看出, 目标函数小于1 , 表明湖北体科所不在有效边界上, 是相对非有效的。计算结果解释为:组合体科所由21.2%国家体科所, 26%北京体科所及北京体育大学体科所52。7%构成, 用了少于90。524%的资源获得不少于湖北体科所的产出。组合体科所少使用资金3.58 万元,高学历17.44 人, 多产出期刊文章0.16 人, 培养学生3。70人。 第四章 总结 4。1 DEA方法的优点 DEA的优点吸引了众多的应用者,应用范围已扩展到美国军用飞机的飞行、基地维修与保养,以及陆军征兵、城市、银行等方面.目前,这一方法应用的领域正在不断地扩大.它也可以用来研究多种方案之间的相对有效性(例如投资项目评价);研究在做决策之前去预测一旦做出决策后它的相对效果如何(例如建立新厂后,新厂相对于已有的一些工厂是否为有效).DEA模型甚至可以用来进行政策评价。 自从数据包络法提出至今,其应用范围日渐广泛.例如它被广泛应用于学校、医院、铁路、银行等公共服务部门的运行效率的评估实证研究。DEA作一种新的效率评估方法,与以前的传统方法相比有很多优点.首先,DEA方法可以用于对具有多投入、多产出的多个决策单元的生产(或经营)绩效性进行评价,而且应用时可以避免像传统方法那样因为各指标量纲的不同而寻求权重因素所带来的诸多困难,其评价结果相对而言比较客观;其次,DEA模型中投入、产出指标的权重可以建立数学规划模型,然后根据实际的数据而产生,而不是事先给定投入与产出的权重权重系数,因此它不受人为主观因素的影响,可避免在权重的分配时评价者的主观意愿对评价结果的造成人为的影响。 另外,数据包络法是一种典型的非参数估计方法,应用该方法评价时无须设定评价函数的具体形式,投入产出采用隐函数的形式表示,不同决策单元的评价函数其参数可以变动,针对各个决策单元都将通过数学规划模型的手段给出最优的投入产出函数,从而利用计算简化。数据包络法评价的是决策单元的相对有效性,其生产前沿面可以看成是最优决策单元的投入与产出所组成的一个包络面,如果对应被评价的决策单元在该生产前面上,则称之为DEA有效,否则,称之为非DEA有效 以决策单元(DMU)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”.这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。该方法以经验数据为基础,逻辑上合理,故能够衡量多个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度.最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。 4.2 DEA方法的缺陷 DEA方法主要用来研究决策单元的多输入多输出的相对有效的绩效评价的有用方法,因此使用这一方法时也存在一些缺陷.首先,它衡量的生产函数边界是确定的,因而它无法分随机因素和测量误差的影响;其次,该方法的绩效效率评价容易受到极值的影响,而且决策单元的效率值对投入、产出指标的选择比较敏感,这就使得如何准确地选取投入、产出指标成为有效使用DEA方法的关键. 另外,由于被评价的决策单元都是从最有利于自己的角度分别求取权重,这就导致了这些权重随着决策单元的不同而可能不同。从而使得每个决策单元的特性缺乏有效的可比性;最后,根据DEA评价方法的特点就是只能判断各个决策单元是否DEA有效,而将所有决策单元分为有效和非有效两大类,因而使用该方法进行决策单元的绩效评价时,可能出现大量甚至全部的决策单元为有效的情形,因此传统的DEA方法不能对被评价的决策单元进行排序。 参考文献 [1]朱泰英, 孙波, 陈兆均. 基于数据包络分析的工程建设项目评标方法[J]。 公路交通技术, 2004(2):101—102。 [2]盛昭瀚. DEA理论、方法与应用[M]. 科学出版社, 1996。 [3]张群, 荀志远. 环保项目有效性评价的数据包络分析方法[J]。 中国管理科学, 2007, 15(5):107—112。 [4]董伦红。 数据包络分析(DEA)方法在体育评价中的应用[J]。 西安体育学院学报, 2004, 21(2):73-74。 10
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:数据包络分析法在管理决策运用中的实际案例分析.doc
    链接地址:https://www.zixin.com.cn/doc/4132313.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork