管理类联考——-数学.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管理 联考 数学
- 资源描述:
-
绪论及预备知识 一、数学试卷形式结构及内容大纲 1、试卷满分及考试时问 试卷满分为200分,考试时间为180分钟。 2、答题方式 答题方式为闭卷、笔试.不允许使用计算器。 3、试卷内容与题型结构 数学基础 75分,有以下两种题型: 问题求解 15小题,每小题3分,共45分 条件充分性判断 10小题,每小题3分,共30分 4、考查内容 综合能力考试中的数学基础部分主要考查考生的运算能力、逻辑推理能力、空间想象能力和数据处理能力,通过问题求解和条件充分性判断两种形式来测试. 试题涉及的数学知识范围有: (一)算术 1、整数 (1)整数及其运算 (2)整除、公倍数、公约数 (3)奇数、偶数 (4)质数、合数 2、分数、小数、百分数 3、比与比例 4、数轴与绝对值 (二)代数 1、整式 (1)整式及其运算 (2)整式的因式与因式分解 2、分式及其运算 3、函数 (1)集合 (2)一元二次函数及其图像 (3)指数函数、对数函数 4、代数方程 (1)一元一次方程 (2)一元二次方程 (3)二元一次方程组 5、不等式 (1)不等式的性质 (2)均值不等式 (3)不等式求解:一元一次不等式(组),一元二次不等式,简单绝对值不等式,简单分式不等式. 6、数列、等差数列、等比数列 (三)几何 1、平面图形 (1)三角形 (2)四边形(矩形、平行四边形、梯形) (3)圆与扇形 2、空间几何体 (1)长方体 (2)圆柱体 (3)球体 3、平面解析几何 (1)平面直角坐标系 (2)直线方程与圆的方程 (3)两点间距离公式与点到直线的距离公式 (四)数据分析 l、计数原理 (1)加法原理、乘法原理 (2)排列与排列数 (3)组合与组合数 2、数据描述 (1)平均值 (2)方差与标准差 (3)数据的图表表示 直方图,饼图,数表。 3、概率 (1)事件及其简单运算 (2)加法公式 (3)乘法公式 (4)古典概型 (5)伯努利里概型 二、数学命题特点 数学考试大纲内容涵盖初中和高中六年的知识,面大,量多,范围广,考生复习时很难抓住重点,同时初数的解题技巧性极强,加大技巧的训练越来越重要. 三、预备知识 1、 基本公式 (1) (2) (3) (4) (5) (6) 2、指数相关知识 (1)平方根 (2)算术平方根 3、条件充分性判断 从大纲要求上看,条件充分性判断题主要考查考生对数学的基本概念、基本方法的熟练掌握程度,并能够迅速准确地判断题干中陈述的结论可否由条件(1)或(2)推出.因而考生在备考时应对于充分条件的有关概念、联考题型的结构及其逻辑关系以及解题策略和应试技巧等有一个全面的理解和把握。 (1)、充分性命题定义 由条件成立,就可以推出结论成立(即),则称是的充分条件。若由条件,不能推出结论成立(即),则称不是的充分条件。 【注意】是的充分条件可巧妙地理解为:有必有,无时不定. 2、解题说明 本大题要求判断所给的条件能否充分支持题干中陈述的结论,即只要分析条件是否充分即可,不必考虑条件是否必要.阅读条件(1)和(2)后选择: A 条件(1)充分,但条件(2)不充分 B 条件(2)充分,但条件(1)不充分 C 条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分 D 条件(1)充分,条件(2)也充分 E 条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分 ▲以上规定全讲义适用,以后不再重复说明。 3、常用求解方法 实际上,这类判断题的求解即判断下面三个命题的真假: ①条件(1)成立,则题干结论成立; ②条件(2)成立,则题干结论成立; ③条件(1)和(2)都成立,则题干结论成立; (1)解法一 直接定义分析法(即由推导) 若由可推导出,则是的充分条件;若由推导出与矛盾的结论,则不是的充分条件.该解法是解“条件充分性判断”型题的最基本的解法,应熟练掌握. 【例1】方程成立。 (1) (2) (2)解法二 题干等价推导法(寻找题干结论的充分必要条件) 要判断是否是的充分条件,可找出的充要条件,再判断是否是的充分条件。 即:若,而,则。特殊地,当条件给定的参数范围落入题干成立范围时,即判断该条件是充分。 【例2】是多项式的因式. (1) (2) 【例3】不等式无解。 (1) (2) 【例4】等式成立. (1) (2) (3)解法三 特殊反例法 由条件中的特殊值或条件的特殊情况入手,推导出与题干矛盾的结论,从而得到条件不充分的选择。 【注】此方法不能用在条件具有充分性的肯定性的判断上。 【例5】整数是140的倍数. (1)是10的倍数 (2)是14的倍数 【例6】成立。 (1)实数在数轴上的位置如图1-1所示 (2)实数满足条件,且 【例7】要使成立。 (1) (2) 第一章 算术 【大纲考点】 1、整数 (1)整数及其运算 (2)整除、公倍数、公约数 (3)奇数、偶数 (4)质数、合数 2、分数、小数、百分数 3、比与比例 4、数轴与绝对值 一、数的概念与性质 1、自然数(非负整数):0,1,2,… 整数:…,—2,—1,0,1,2,… 分数:将单位1平均分成若干份,表示这样的一份或几份的数叫做分数。 百分数:表示一个数是另一个数的百分之几的数叫做百分数. 2、数的整除 设是任意两个整数,其中,如果存在一个整数,使得等式成立,则称整除或能被整除,记作,此时我们把叫做的因数,把叫做的倍数。如果这样的不存在,则称不整除,记做。 3、整除的性质 (1)如果,则; (2)如果,则对任意的整数有; 4、常见整除的特点 能被2整除的数:个位为0,2,4,6,8. 能被3整除的数:各数位数字之和必能被3整除. 能被4整除的数:末两位(个位和十位)数字必能被4整除。 能被5整除的数:个位为0或5。 能被6整除的数:同时满足能被2和3整除的条件。 能被8整除的数:末三位(个位、十位和百位)数字必能被8整除。 能被9整除的数:各数位数字之和必能被9整除。 能被10整除的数:个位必为0。 能被11整除的数:从右向左,奇数位数字之和减去偶数位数字之和能被11整除(包括0)。 能被12整除的数:同时满足能被3和4整除的条件。 连续个正整数的乘积能被整除。 5、带余除法 设是任意两个整数,其中,则存在整数使得成立,而且都是唯一的。叫做被除所得的不完全商,叫做被除所得到的余数。 6、奇数与偶数 不能被2整除的数称为奇数;能被2整除的数称为偶数。 【注】0属于偶数. 7、质数与合数 一个大于1的整数,如果它的正因数只有1和它本身,则称这个整数是质数(或素数);一个大于1的整数,如果除了1和它本身,还有其他的正因数,则称这个整数是合数(或复合数)。 【质数、合数的判断方法】对于一个不大的自然数(,非完全平方数),可用下面的方法判断它是质数还是合数,先找出一个大于的最小完全平方数,再写出内的所有质数,若这些质数都不能整除,则是质数;若这些质数中有一个质数能整除,则为合数。 8、质数与合数的重要性质 (1)质数和合数都在正整数范围,且有无数多个. (2)2是唯一的既是质数又是偶数的整数,即是唯一的偶质数.大于2的质数必为奇数。质数中只有一个偶数是2,最小的质数也是2。 (3)若是一质数,是任一整数,则能被整除或与互质(与的最大公因数是1)。 (4)设是一质数,是整数,若,则必有或。 (5)推广:设是一质数,是个整数,若,则一定能整除其中一个。 (6)若正整数的积是质数,则必有或。 (7)1既不是质数也不是合数。 (8)如果两个质数的和或差是奇数,那么其中必有一个是2;如果两个质数的积是偶数,那么其中也必有一个是2。 (9)最小的合数是4.任何合数都可以分解为几个质数的积,能写成几个质数的积的正整数是合数。 9、最大公约(因)数与最小公倍数 设是两个整数,若整数满足,则称为和的公约数。和的所有公约数中的最大者称为和的最大公约数,记为。 分子与分母互质的分数称为最简分数或既约分数。 设是两个整数,若整数满足,则称为和的公倍数。和的所有公倍数中的最小者称为和的最小公倍数记为。 10、互质数 公约数只有1的两个数称为互质数。即若,则称互质。 11、公倍数与公因数的性质 设是任意两个正整数,则有: (1)的所有公倍数就是的所有倍数,即若且,则; (2)。特别地,当时,有. 【典型例题】 【例1】从1到120的自然数中,能被3整除或能被5整除的数的个数是( )个。 (A)64 (B)48 (C)56 (D)46 (E)72 【例2】若是一个大于100的正整数,则一定有约数( ) (A)5 (B)6 (C)7 (D)8 (E) 以上结论均不正确 【例3】一班同学围成一圈,每位同学的一侧是一位同性同学,而另一侧是两位异性同学,则这班的同学人数 ( ) (A) 一定是4的倍数 (B) 不一定是4的倍数 (C)一定不是4的倍数 (D) 一定是2的倍数,不一定是4的倍数 (E) 以上结论均不正确 【例4】某人左右两手分别握了若干颗石子,左手中石子数乘加上右手中石子数乘之和为,则右手中石子数为( ) (A)奇数 (B)偶数 (C)质数 (D)合数 (E)以上结论均不正确 【例5】正整数N的8倍与5倍之和,除以10的余数为9,则N的最末一位数字为 ( ) (A) 2 (B)3 (C) 5 (D) 9 (E) 以上结论均不正确 【例6】9121除以某质数,余数得13,这个质数是( ) (A )7 (B) 11 (C ) 17 (D) 23 (E) 以上结论均不正确 【例7】已知3个质数的倒数和为,则这三个质数的和为( ) (A)334 (B)335 (C)336 (D)338 (E)不存在满足条件的三个质数 【例8】有5个最简正分数的和为1,其中的三个是,其余两个分数的分母为两位整数,且这两个分母的最大公约数是21,则这两个分数的积的所有不同值的个数为( ) (A)2个 (B)3个 (C)4个 (D)5个 (E)无数多个 【例9】两个正整数的最大公约数是6,最小公倍数是90,满足条件的两个正整数组成的大数在前的数对共有( ) (A) 1对 (B)2对 (C)3对 (D)4对 (E)5对 【例10】三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数(素数),且依次相差6岁,他们的年龄之和为 ( ) (A)21 (B)27 (C)33 (D)39 (E)51 【例11】三个质数之积恰好等于它们和的5倍,则这三个质数之和为( ) (A)11 (B)12 (C)13 (D)14 (15)15 【例12】条件充分性判断 1、成立 (1) (2) 2、自然数n的各位数字之积为6 (1)n是除以5余3,且除以7余2的最小自然数 (2)n是形如(m是正整数)的最小自然数 3、可取两个不同的值 (1)实数,y满足条件(=-1 (2)实数,y满足条件(=1 4、 (1) (2) 5、为偶数 (1)设为整数, (2)在这个自然数中的相邻两个数之间任意添加一个加号或减号,设这样组成的运算式的结果是。 6、有偶数位来宾 ( ) (1)聚会时所有来宾都在一张圆桌周围,且每位来宾与邻座性别不同. (2)聚会时,男宾是女宾的2 倍. 二、数的分类 1、实数包括有理数和无理数 2、数轴 数轴是规定了原点、正方向和单位长度的一条直线。 实数与数轴上的点一一对应。 数轴上的点从左到右的顺序,就是对应的实数从小到大的顺序. 对于任意实数,用表示不超过的最大整数;令,称是的整数部分,是的小数部分. 3、实数的基本性质 (1)若,则在中有且只有一个成立; (2),则。 4、实数的运算 任意两个实数的和、差、积、商(除数不等于零)仍然是实数. (1)四则运算 加法交换律 加法结合律 乘法交换律 乘法结合律 分配率 与互为相反数 与互为倒数 (2)乘方与开方运算 若,则称为的次方(或次幂), 称为的次方根。的正的次方根记作. 【性质】正数的任何次方都是正数; 0的正数次方都是0; 负数的奇次方是负数;负数的偶次方是正数; 正数的奇次方根是正数; 正数有两个偶次方根,它们互为相反数; 0的次方根为0; 负数的奇次方根是负数;负数没有偶次方根; 【运算规律】 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 5、集合 (1)集合的概念 集合:将能够确切指定的一些对象看成一个整体,这个整体就叫做集合,简称集。 元素:集合中各个对象叫做这个集合的元素。 (2)常用数集及记法 非负整数集(自然数集):全体非负整数的集合,记作. 正整数集:非负整数集内除0的集合,记作或。 整数集:全体整数的集合,记作。 有理数集:全体有理数的集合,记作。 实数集:全体实数的集合,记作. 【注】①自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 ②非负整数集内排除0的集,记作,等其它数集内排除0的集,也是这样的表示,例如,整数集内排除0的集,表示成。 (3)集合的分类 有限集:含有有限个元素的集合。 无限集:含有无限个元素的集合. 规定:空集是不含任何元素的集合。 (4)元素与集合的关系 属于:如果是集合的元素,就说属于,记作; 不属于:如果不是集合的元素,就说不属于,记作; (5)集合中元素的特性 确定性:按照明确的判断标准给定一个元素或者在这个集合里或者不在,不能模棱两可; 互异性:集合中的元素没有重复; 无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出); 【注】①集合通常用大写的拉丁字母表示,如等,元素通常用小写的拉丁字母表示,如等; ②的开口方向,不能把颠倒过来写。 【典型例题】 【例13】一辆出租车有段时间的营运全在东西走向的一条大道上,若规定向东为正、向西为负,且知该车的行驶公里数依次为-10,+6,+5,-8,+9,-15,+12,则将最后一名乘客送到目的地时,该车的位置( ) (A)在首次出发地的东面1公里处 (B)在首次出发地的西面1公里处 (C)在首次出发地的东面2公里处 (D)在首次出发地的西面2公里处 (E)仍在首次出发地 【例14】下列各式正确的是( ) (A)两个无理数的和是无理数 (B)两个无理数的乘积是无理数 (C)两个无理数的乘积是有理数 (D)一个有理数和一个无理数的乘积是无理数 (E)一个有理数和一个无理数相加减,其结果是无理数 【例15】的值是( ) (A) (B) (C) (D) (E) 【例16】( ) (A) (B) (C) (D) (E) 【例17】已知,那么( ) (A) (B) (C) (D) (E)以上结论均不正确 【例18】 有一个正的既约分数,如果其分子加上24,分母加上54后,其分数值不变,那么此既约分数的分子与分母的乘积等于( ) (A)24 (B)30 (C)32 (D)36 (E)38 【例19】 把无理数记作a,它的小数部分记作b,则等于( ) (A) 1 (B)-1 (C)2 (D)—2 (E)以上答案均不正确 【例20】 等式成立的条件是( ) (A)是任意实数 (B) (C) (D) (E) 【例21】已知,则的值为( ) (A) (B) (C) (D) (E)—1 【例22】为有理数,且等式成立,则的值等于( ) (A) 0 (B) 1 (C) 2 (D) 3 (E) 以上结论均不正确 【例23】条件充分性判断 1、 (1) (2) 2、 (1) (2)是有理数,是无理数,且 3、分别表示不超过的最大整数,则可以取值的个数是3个 (1) (2) 三、绝对值 1、绝对值的定义 实数a的绝对值定义为: 即:正数的绝对值是它本身、负数的绝对值是它的相反数、零的绝对值还是零 2、绝对值的几何意义 实数a的绝对值的几何意义:数轴上实数a所对应的点到原点的距离(如图1—2所示). 3、绝对值的性质 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 4、绝对值不等式(三角不等式) (1): 当且仅当且时,左边等号成立; 当且仅当时,右边等号成立。 (2): 当且仅当且时,左边等号成立; 当且仅当时,右边等号成立。 (3): 当且仅当时,左边等号成立; 当且仅当时,右边等号成立, 【典型例题】 【例24】已知是实数,,若,则等于( ) (A) (B) (C) (D) (E) 【例25】已知,求log。 【例26】求适合下列条件的所有的值 (1) (2) (3) 【例27】已知,,则有( ) (A) (B) (C) (D) (E)A、B、C、D都不正确 【例28】已知,则的取值范围是( ) (A)(] (B) ) (C) (D)(] (E) () 【例29】若 ,则下列不等式成立的是( ) 【例30】满足条件 ,则等于( ) 【例31】已知,则的值为( ) (A)1 ( B)—1 (C) (D) (E)不能确定 【例32】设,则下列结论正确的是( ) (A)y没有最小值 (B)只有一个x使y取到最小值 (C)有无穷多个x使y取到最大值 (D)有无穷多个x使y取到最小值 (E)以上结论均不正确 【例33】条件充分性判断 1、 成立. (1) (2) 2、成立 (1) (2) 3、函数的最小值为 (1) (2) 4、方程=1有且仅有一个实根 (1) (2) 5、 (1) (2) 6、方程无根 (1) (2) 四、比、比例、均值 1、比 两个数相除,又称为这两个数的比。即其中a叫做比的前项,b叫做比的后项。相除所得商叫做比值.记作,在实际应用中,常将比值表示成百分数,称为百分比,如3:4=75%。 2、几个重要关系 原值现值; 原值现值; 甲比乙大;甲是乙的; 【注】甲比乙大不等于乙比甲小,不要混淆。先减小,再增加并不能等于原数值。 3、比例 相等的比称为比例,记作或。其中和称为比例外项,和称为比例内项。 当时,称为和的比例中项,显然当均为正数时,是和的几何平均值。 4、正比 若(不为零),则称与成正比,称为比例系数。 【注】并不是和同时增大或减小才称为正比.比如当时,增大时,反而减小。 5、反比 若(不为零),则称与成反比,称为比例系数。 【注】同正比也不是反向增大或减小才称为反比,如。 6、比例的基本性质 (1) (2) (3)(反比性质) (4)(更比性质) (5)(合比性质) (6)(分比性质) (7)(合分比性质)特别地,当时,有;或者可写成 (8)(等比性质),其中 7、增减性变化关系() 若,则。注意,反之不一定成立。 若,则。注意,反之不一定成立。 8、平均值 (1)算术平均值 设个数,称为这个数的算术平均值,简记为 . (2)几何平均值 设个正数,称为这个数的几何平均值,简记为 【注意】几何平均值是对于正数而言。 (3)基本不等式 ①当为n个正数时,它们的算术平均值不小于它们的几何平均值,即 当且仅当. 特别地,当n=2时,有(),此时的几何平均值称为的比例中项. ②,即对于正数而言,互为倒数的两个数之和不小于2,且当时取得最小值时2。 【例34】设,则使成立的y值是( ) (A)24 (B)36 (C)74/3 (D)37/2 (E)以上结论均不正确 【例35】已知且与成反比例,与成正比例。当时,,又当时,,那么的表达式是( ) 【例36】求3、8、9这三个数的算术平均值和几何平均值. 【例37】将一条长为a的线段截成长为和 的两条线段,使恰是与的几何平均值。我们称对任意一个量的这种分割为黄金分割,试求。 【例38】三个实数1, x-2和x的几何平均值等于4,5和—3的算术平均值,则x的值为( ) (A)-2 (B)4 (C)2 (D)-2或4 (E)2或4 【例39】 的算术平均值是2,几何平均值也是2,则的几何平均值是( ) 【例40】 如果三个数的算术平均值为5,则与8的算术平均值为( ) (A) (B) (C)7 (D) (E)以上结论均不正确 【例41】直角边之和为12的直角三角形的面积的最大值为( ) (A)16 (B)18 (C)20 (D)22 (E)不能确定 【例42】条件充分性判断 1、用表示十位是,个位是的一个两位数,有成立 (1)是3的倍数 (2)是9的倍数 2、某公司得到一笔贷款共68万元,用于下属三个工厂的设备改造.结果甲、乙、丙三个工厂按比例分别得到36万元、24万元和8万元。 (1)甲、乙、丙三个工厂按的比例分配贷款 (2)乙厂所得款额恰是甲厂所得款额与丙厂所得款额的2倍的比例中项 3、 4、两数的几何平均值的3倍大于它的算术平均值 (1)满足 (2)均为正数 5、某班学生的平均身高是1.66米 (1)该班有30名男生,他们的平均身高为1.70米 (2)该班有20名女生,她们的平均身高为1.60米 6、的算术平均值为8 (1)为不等的正整数,且的算术平均值为 (2)为正整数,且的算术平均值为 7、已知则。 (1) (2) 8、的算术平均值是14/3,而几何平均值是4 (1)是满足的三个整数, (2)是满足的三个整数, 第二章 应用题 【备注】初数中最容易出错的地方就是应用题,因为应用题的解题技巧很强,稍不留神就会掉入命题者的陷阱里。关于初等数学的应用题有许多内容,比如:百分比问题,溶液问题,工程问题等等,要总结有很多,在这里只是选择了几个有代表性的应用题内容进行讲解。 常用的应用题的解法有: ▲转化法:改变思考的方式和角度,使复杂问题,转化为熟悉的、简单的基本问题,或将题中条件,加以转化,或重新组合,以便得到明确的解题思路,另外把复杂的数量关系中不同的单位制,转化为统一单位制下的简单数量关系; ▲穷举法:这是朴素且实用的方法,对讨论对象加以分类,使问题简单化 ▲图解法:以图形表达命题,帮助我们理解题意,发现隐含条件,找到解题途径; ▲代数法:设未知量找等量关系分别方程. 除了这几种常用的解法外,还有逆推法、综合法、归纳法等等,可依据题目的类型和特点选择使用。 一、比和比例、百分比 MBA联考数学试题,每年都会出有关百分比的应用题,并且相对较难,同时,还存在着百分比的标准量不明确,或同一题中不同百分比各自有不同标准量,使应试者难于判断,失误率高于其他应用题的实际情况,也说明百分比问题是应用类题型的一个难点. 知识点:1。 比例性质(略) 2。 1、打折问题 基本公式:售价=成本+利润 甲比乙多p% ≠ 乙比甲少 p% 甲 = 乙(1+p%) 甲 = 【解题提示】要选对基准量,注意折扣的变化与利润的关系。解题之关键是要分清成本价,原销售价、“优惠价"和利润这几个概念,有些题目还会给出利润所占的百分比,此时要注意,通常情况下毛利率这一百分比的标准量是销售价而不是成本价,这是在工商管理学的教材上明确定义的,但具体题目还是会有指明以成本价计算利润率的情况,只能具体问题具体分析了,此题是已知最终售价即“优惠价”,由此逆推,依所给条件去求原价,即可知盈亏。 【例1】某商品单价上调20%后,再降为原价的90%,则降价率为( ) A、30% B、28% C、25% D、22% E、20% 【例2】某商品由于进货价格降低了15%,使得利润率提高了21%。则现在的利润率为( )% A. 40 B。 35 C. 38 D。 45 E。 50 【例3】某商店商品按原价提高50%,7折优惠,每售一套盈利625元,其成本2000元,问按优惠价售出与按原价售出是多赚钱还是少赚钱?. 【例4】一款手表,连续两次降价10%后,现在售价是40。5元,求这款手表的原价. 【例5】条件充分性判断 〈2004—10—13〉A公司2003年6月份的产值是1月份产值的a倍 (1) 在2003年上半年,A公司月产值的平均增长率为 (2) 在2003年上半年,A公司月产值的平均增长率为 【例6】 某电子产品一月份按原定价的80%出售,能获利20%;二月份由于进价降低,按同样原定价的75%出售,能获利25%。那么2月份进价是一月份进价的百分之( ) A、80% B、90% C、95% D、75% E、以上均不对 【例7】某工厂二月份产值比一月份的增加10%,三月份比二月份减少10%,那么( ) A. 三月份与一月份产值相等 B。 一月份比三月份产值多 C. 一月份比三月份产值少 D. 一月份比三月份产值多 【例8】 某企业2007年末的统计资料为:全年的生产总值增加了10%,而企业员工的总人数减少了10%。则该企业在2007年全年的人均年值增加的百分率约为( ) A、10% B、15% C、20% D、22% E、25% 2、平均成绩问题;(十字交叉) 【解题提示】当一个整体按照某个标准分为两类时,根据杠杆原理得到一种巧妙的方法,即是交叉法。该方法现上下分列出每部分的数值,然后与整体数值相减,减得的两个数值的最简整数比就代表每部分的数量比。 【例9】 某乡中学现有学生500人,计划一年后女生在校生增加4%,男生在校生人数增加3%,这样,在校生将增加3。6%,那么,该校现有女生和男生各多少人?( ) A、200和300 B、300和200 C、320和180 D、180和320 E、250和250 【例10】〈2002—1-2〉 公司职工有50人,理论知识考核平均成绩为81分,按成绩将公司职工分为优秀与非优秀两类,优秀职工的平均成绩为90分,非优秀职工的平均成绩是75分,则非优秀职工的人数为( ) A. 30人 B。 25人 C。 20人 D. 无法确定 【例11】<2001-1-4〉 乙组平均成绩为75分,其中男同学人数比女同学多80%,而女同学平均成绩比男同学高20%,则女同学的平均成绩为 【例12】<2003—1-20> 车间共有40人, 某技术操作考核的平均成绩为80分,其中男工平均成绩为83分,女工平均成绩为78分,该车间女工有( )人 A. 16 B。 18 C. 20 D. 24 E. 28 【例13】〈2008〉 用30%和20%两种盐溶液,配成24%溶液500克,求各需多少克? 【例14】〈2002-10-4〉 甲乙两组射手打靶,乙组平均成绩为171。6环, 比甲组平均成绩高出30%,而甲组人数比乙组多20%, 则甲、乙两组射手的总平均成绩是( ) 3、比例问题(几个变量之比); 【解题提示】根据题目所给数值先求出最简单整数比,再根据份额求出对应数值。 【例15】<2010—1>电影开演时观众中女士与男士人数之比为,开演后无观众入场,放映一小时后,女士的20%,男士的15%离场,则此时在场的女士与男士人数之比为( )。 A、 B、 C、 D、 E、 【例16】〈2001-1-3> 一公司向银行借款34万元,欲按的比例分配给下属甲、乙、丙三车间进行技术改造,则甲车应得 ( ) A. 4万元 B。 8万元 C。 12万元 D。 18万元 【例17】条件充分性判断 <2003-1-1〉 某公司得到一笔贷款共68元用于下属三个工厂的设备改造,结果甲,乙,丙三个工厂按比例分别得到36万元,24万元和8万元 ( ) (1) 甲, 乙, 丙三个工厂按的比例分配贷款 (2) 甲, 乙, 丙三个工厂按的比例分配贷款 【例18】<2002—1-1> 奖金发给甲、乙、丙、丁四人,其中1/5发给甲,1/3发给乙,发给丙的奖金数正好是甲、乙奖金之差的3倍,已知发给丁的奖金为200元,则这批奖金当为:( ) A。 1500元 B. 2000元 C. 2500元 D. 3000元 【例19】<2002-1-4> 某厂生产的一批产品经产品检验,优等品与二等品的比是5:2,二等品与次品的比是5:1,则该批产品的合格率(合格品包括优等品与二等品)为:( ) A。 92% B。 92。3% C。 94% D。 94。6% E。 96% 【例20】甲、乙、丙三人合开公司,投资比例分别为,他们商定在一周年店庆后按投资比例分红,若丙分得红例3万元,则红利的总额为多少? 【例21】一大队和二大队人数之比为,现从一大队抽调8名同志到二大队执行任务,此时一大队与二大队的人数之比为,问两个大队原有多少人? 【例22】家中父亲与儿子的体重之比恰等于母亲与女儿的体重之比,已知父亲体重与儿子体重之和为125公斤,母亲与女儿体重之和为100公斤,儿子比女儿重10公斤,则儿子的体重为( )公斤? A、40 B、50 C、55 D、60 E、65 二、速度问题 解题提示:根据题意画图,找等量关系(一般是时间和路程),列方程求解。 这种题的类型有: 1。 追及相遇 基本公式: 类型一:直线型 类型二:同向圆圈 设跑道周长为, 甲、乙每相遇一次,甲比乙多跑一圈,若给定时间内,相遇n次,则 (同向加一,反向减一) 类型三:反向圆圈 甲、乙每相遇一次,路程之和为一圆 若给定时间内,相遇n次,则 【解题技巧】在做圆圈型追及相遇题时,在求第k次相遇情况时,可以将k—1次相遇看成起点进行分析考虑。 【例23】 条件充分性判断 甲乙两人分别从A、B两地同时出发相向匀速行走, t 小时后相遇于途中C点,此后甲又走了6小时到达B,乙又走了h小时到达A地,则t, h的值均可求.( ) (1) 从出发经4小时,甲乙相遇 (2) 乙从C到A地又走了2小时40分钟 【例24】两地相距351公里,汽车已行驶了全程的,试问再行驶多少公里,剩下的路程是已行驶的路程的5倍? ( ) A。 19。5公里 B。 21公里 C。 21。5公里 D。 22公里 【例25】某人下午三点钟出门赴约,若他每分钟走60米,会迟到5分钟,若他每分钟走75米,会提前4分钟到达。所定的约会时间是下午( ) A。 三点五十分 B. 三点四十分 C。 三点三十五分 D。 三点半 【例26】 A、B两地相距15公里,甲中午12时从A地出发,步行前往B地,20分钟后乙从B地出发骑车前往A地,到达A地后停留40分钟后骑车从原路返回,结果甲、乙同时到达B地,若乙骑车比甲步行每小时快10公里,则两人同时到达B地的时间为( ) A. 下午2时 B。 下午2时半 C. 下午3时 D。 下午3时半 【例27】<2004—10—1〉 甲、乙两人同时从同一地点出发,相背而行,1 小时后他们分别到达各自的终点A和B 。若从原地出发,互换彼此的目的地,则甲在乙到达A之后35分钟到达B 。问:甲的速度和乙的速度之比是( ) A。 3:5 B。 4:3 C。 4:5 D。 3:4 E. 以上结论均不正确 【例28】 甲、乙两地相距468千米,A、B两辆卡车分别从甲、乙两地同时出发,相向而行,经过4.5小时相遇。已知A卡车每小时行48千米,问B卡车每小时行多少千米? 【例29】某部队以每分钟100米的速度夜行军,在队尾的首长让通信员以3倍于行军的速度将一命令传到部队的排头,并立即返回队尾。已知通信员出发到返回队尾,共用9分钟,求队伍的长度? 【例30】条件充分性判断 甲、乙两同时从椭圆形跑道上同一点出发沿着顺时针方向跑步,甲比乙快,可以确定甲的速度是乙的速度的1.5倍. ( ) (1) 当甲第一次从背后追上乙时,乙跑了2圈 (2) 当甲第一次从背后追上乙时,甲立即转身沿着逆时针跑去,当两人再次相遇时,乙又跑了0。4圈 【例31】运动场的跑道周长400米,甲、乙两名运动员从起跑点同时同向出发.甲每分钟390米,乙每分钟310米。求多少分钟后甲超过乙一圈? 2。 顺流、逆流 船在静水中速度为,水速,则 (则相对于河岸) : 顺水船速:+ 逆水船速: – 【例32】 两码头相距144千米,一艘汽艇顺水行完全程需要6小时。已知这条河的水流速为每小时3千米,求这艘汽艇逆水行完全程需要的时间 【例33】两个码头相距352千米,一艘客轮顺流而下行完全程需要11小时,逆流而上行完全程需要16小时,求这条河的水流速度。 3。 火车、桥、隧道、电线杆 【例34】一列火车全长270米,每秒行驶18米,全车通过一条隧道需要50秒,求这条隧道的长度. 【例35】一卡车从甲地驶向往乙地,每小时行60千米,另一卡车从乙驶向甲地,每小时行55千米,两车同时出发,在离中点10千米处相遇,求甲乙两地之间的距离。 【例36】 快慢两列车长度分别为160和120米,它们相向驶在平行轨道上,若坐在慢车上的人见整列快车驶过时间是4秒,那么坐在快车上的人展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




管理类联考——-数学.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4053199.html