分享
分销 收藏 举报 申诉 / 8
播放页_导航下方通栏广告

类型能被2、3、4、5、6、7、8、9等数整除的数的特征讲解学习.doc

  • 上传人:天****
  • 文档编号:3919969
  • 上传时间:2024-07-23
  • 格式:DOC
  • 页数:8
  • 大小:27.04KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    整除 特征 讲解 学习
    资源描述:
    能被2、3、4、5、6、7、8、9等数整除的数的特征 学习—————好资料 能被2、3、4、5、6、7、8、9等数整除的数的特征 性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。 性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。  能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除 能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除 能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.   例如:4675=46×100+75   由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.   又如: 832=8×100+32   由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此, 因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除. 能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除 能被6整除的数,个数位上的数字和能被3整除的偶数,              如果一个数既能被2整除又能被3整除,那么这个数能被6整除 能被7整除的数, 若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续 上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如 判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。 能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除 能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除 能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个                    位数为零) 能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小  数)能被11整除,则该数就能被11整除。 11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!          能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除 能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 能被17整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。    另一种方法:若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除 能被19整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。  另一种方法:若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除 能被23整除的数,若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除 能被25整除的数,十位和个位所组成的两位数能被25整除。 能被125整除的数,百位、十位和个位所组成的三位数能被125整除。 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘 ,如     9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);                 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:    有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:     123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。        上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公 式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2:    有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2:     213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。         上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析   例1  设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?      解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有 种不同方法.       (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有 种不同方法.   点评   由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.     例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少种?   解   依题意,符合要求的排法可分为第一个排 、 、 中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:     ∴ 符合题意的不同排法共有9种.   点评   按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.   例3 判断下列问题是排列问题还是组合问题?并计算出结果.   (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?   (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?   (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?   (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?   分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.   (1)①是排列问题,共用了 封信;②是组合问题,共需握手 (次).   (2)①是排列问题,共有 (种)不同的选法;②是组合问题,共有 种不同的选法.   (3)①是排列问题,共有 种不同的商;②是组合问题,共有 种不同的积.   (4)①是排列问题,共有 种不同的选法;②是组合问题,共有 种不同的选法. 排列组合、二项式定理 一、考纲要求 1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题. 2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题. 3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题. 二、知识结构         三、知识点、能力点提示 (一)加法原理乘法原理 说明  加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据. 例1  5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种? 解:  5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有 3×3×3×3×3=35(种) (二)排列、排列数公式 说明  排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查. 例2  由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有(    ) A.60个        B.48个        C.36个        D.24个 解  因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个) 由此可知此题应选C. 例3  将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种? 解:  将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为 3P13=9(种). 精品资料
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:能被2、3、4、5、6、7、8、9等数整除的数的特征讲解学习.doc
    链接地址:https://www.zixin.com.cn/doc/3919969.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork