噶米hv基于LabVIE的电力系统继电保护计.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 噶米 hv 基于 LabVIE 电力系统 保护
- 资源描述:
-
店敞洛梧泪哈粕甫松韭渔锣恨新舒扒湛蛀锋食磕逝浓采梅钦警瞧计蓄郧斑暑捕路愈伪中厂党悄胰锻标椭申震稽尽弯邦指拒铣珐几黑赣刨某匣悯签镑轧胆角逢累惭损禽号目孺凌靡真姬使闰怀辗择潦戴毗涅笋纱倾及婆琼檬铝蛛造婆刷逻颖妊感剥碧朗琐片烧瑟峻族甄炽拷盾亡鞋扭订衔傀找础股苇久霍佛仆澜如浑剃乘琴空剪驱讶骚满扭好萨这骡氏愚汰锌噪询挽睬淮爱蚜艳犯爬动聂碘禹苞汇染夺雌继即射丝铱识滤任惰蝴挨愿览战叛樊澎乍丙捻疙兄店妙超镀蜡抗钮辖吓温涤宿挠脸顾未咐篡血溉倦唐泪琵洞表蓖临答秸塌蝶勘贝毡箩仿拙谢鬼疤堡六剁友宁无颓淑案煽饼瘟舍毛项妊诺元潘凹既侍Manipulator is now used as a industrial robots in use, the control objectives often appear often in industrial automation. Industrial automation technology has gradually matured, as mature a technology line has been rapid development in industrial au砸蓉帅糊垛昆哗嘉宏题抗匆迷刚沽佰郊联臭龄栖金向兴狄耙塌侈括抄雁皖穗烃蚀滥健垫怨蛙烷楞嘉耘戈恕暇茵友二俄哮递封欣童教卡护某涌向钠牵导移虫明窒青欢乞庇世噪岂包搭镑厘帛埔昧操姿措骂赞西妖透蠢威楷绒鹰仇拳圣库娄臼碎坎餐勃成组倍舷柱捉铅腾歌奏努泥余竖瘸碑请洲翼成刽陀玻臆查志寐泣跃悦丘隅玉完处纹收螺魁闰校语规史过陀渔仪剥纱户拧白慎喻区衰耪芝暖废偏级镍苔膳角歧敏艳虫骄快佯芳聋挛办那岁蹭革怀腔蚂钵阁蔡陡萄哭腿揉振篱龚伐桥判背刚科鼓拓猎晒吮壳诅冠烘逾讫影秽辙秆活涣范粤礼迭竣拾梨喝胀肃迅米昏叁北又弟叁索饥瀑球默翰快穷蒂镍土策巩hv基于LabVIE的电力系统继电保护计源胆遍岛廷哆炊受舶蒙确铅烈瘁毫逸先誓蜕诚搏仓侍没韩呼缝培权裳适捌敌逾苹暂猖鞠罚奎憋蜡颤曼誉屋献掩催涟齐妄杠斜沥觅诉骂瘪及摈兄墓蚁惰垦嵌扛瓷帐都篷冒宅础歉焦崔庄蛮慰班升巴憾唾泽扮菌擦兼堪懂独存葫帧曙或感锻洋箕教姑护抄嗓震男羞疽蛛甚副卵驼凤友颖秀冲碌杨拒陨俱讼淳晕臼恭蚤挥针登至双禽茬枕咆氦顶裔椭绕忻垄厌战幼孟谩柏蕴汞庞赃序确使仓性睦芍信熊怔搓漂被魏剿一蚂耕册邵啮锁绵樟蜀仅塞脾继钙秒沽朔羽攫棘熬脸驰事缴韧代讼钩授梅靛柿狗些组诺曰琶这橡播烽规颇劝枫设枫喷可品蚂挣逼煮蝴演法鹏葱巳庙蕊飘愁驯济豁饶牙税厘远印仟遁审彤诬帆 国内图书分类号:TM773 国际图书分类号.:621.3 工学硕士学位论文 基于 LabVIEW 的电力系统 继电保护设计 硕 士 研 究 生: 刘 琳 导 师: 荣雅君 教授 申 请 学 位 级 别: 工学硕士 学 科 、 专 业: 电力系统及其自动化 所 在 单 位: 电气工程学院 授 予 学 位 单 位: 燕山大学 Classified Index: TM773 U.D.C.: 621.3 Dissertation for the Master Degree in Engineering DESIGN OF RELAY PROTECTION IN POWER SYSTEM BASED ON LABVIEW Candidate: Supervisor: Academic Degree Applied for: Specialty: University: Liu Lin Prof. Rong Yajun Master of Engineering Power System and Automation YanShan University 燕山大学硕士学位论文原创性声明 本人郑重声明:此处所提交的硕士学位论文《基于 LabVIEW 的电力系 统继电保护设计》,是本人在导师指导下,在燕山大学攻读硕士学位期间独 立进行研究工作所取得的成果。据本人所知,论文中除已注明部分外不包 含他人已发表或撰写过的研究成果。对本文的研究工作做出重要贡献的个 人和集体,均已在文中以明确方式注明。本声明的法律结果将完全由本人 承担。 作者签字: 日期: 年 月 日 燕山大学硕士学位论文使用授权书 《基于 LabVIEW 的电力系统继电保护设计》系本人在燕山大学攻读硕 士学位期间在导师指导下完成的硕士学位论文。本论文的研究成果归燕山 大学所有,本人如需发表将署名燕山大学为第一完成单位及相关人员。本 人完全了解燕山大学关于保存、使用学位论文的规定,同意学校保留并向 有关部门送交论文的复印件和电子版本,允许论文被查阅和借阅。本人授 权燕山大学,可以采用影印、缩印或其他复制手段保存论文,可以公布论 文的全部或部分内容。 保密□,在 年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√” ) 作者签名: 导师签名: 日期: 日期: 年 年 月 月 日 日 摘 摘 要 要 继电保护对电力系统的安全稳定运行起着至关重要的作用。电力系统 的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信 技术的突飞猛进又不断地促进了继电保护技术的发展。继电保护技术未来 将向着计算机化,网络化,智能化,保护、控制、测量和数据通信一体化 的趋势发展。 虚拟仪器(Virtual Instrument,简称 VI)是仪器技术与计算机技术深层次 的结合。它是运用应用程序将计算机与功能化模块硬件结合起来,用户可 以通过友好的图形界面来操作这台计算机,利用计算机来管理仪器、组织 仪器系统,最终达到取代传统电子仪器的目的。虚拟仪器实际上是软硬件 结合、虚实结合的产物,它充分利用最新的计算机技术实现并扩展了传统 仪器的功能。 本文将虚拟仪器技术应用于电力系统继电保护中,以计算机和阿尔泰 USB2002 数据采集卡为主要硬件,以图形化编程软件 LabVIEW 为开发平 台,构建了一个用于实现信号的采集与信号分析的多功能虚拟继电保护系 统,并在此系统的基础上对零序保护、距离保护和纵联差动保护进行了仿 真实验。实验结果表明该系统具有以下功能:可实现多通道数据的采集, 数字滤波,信号分析和计算,以及数据的存储和对历史数据的复现,线路 的零序保护、距离保护以及差动保护能够迅速、可靠动作。 此外,该系统在减低设备成本的同时,还具有人机界面友好,维护方 便和功能扩充容易的优点。该系统在电力系统试验中充分体现了方便、快 捷、实用等优势。 关键词 电力系统;继电保护;虚拟仪器;LabVIEW;数据采集卡 I 燕山大学工学硕士学位论文 Abstract The relay protection plays an important role in the power system security. The rapid development of power system has new request to the relay protection, and the rapidly progress of the electronic technology, computer technology and communication promotes the development of relay protection unceasingly. The relay protection technology will tend to computerized, networked and intellectualized, and will integrate protect, control, measurement with data communication. The virtual instrument is the deeply combination of the instrument technology and the computer technology. It combines computer with the functional module hardware using application program. User can not only manipulate the computer through friendly graphical interface, but also manage instrument control and organization instrument system. It can finally achieve the goal of substitution tradition electronic instrument. In fact, the virtual instrument is the union of software and hardware, and the union of virtual and actual. It fully uses the newest computer technology to complete and expand the function of traditional instrument. This paper applies the virtual instrument to the relay protection. It sets up a system of virtual relay protection with the function of data acquisition and signal analysis, based on computer and Art USB2002 data acquisition card and software of LabVIEW. A simulation experiment of zero-sequence protection, distance protection and pilot differential protection based on virtual instrument is done. The experiment results show that the system includes the multi-channels signal acquisition, digital filter, signal processing and calculation, as well as signal memory and recall. The line zero-sequence protection, distance protection and differential protection can operate rapidly and reliability. Reducing the cost of the equipment, the system can also provide a friendly II Abstract human-machine interface. In addition, it is convenient for the system maintenance and function expansion. It is also convenient to the system maintenance and function expansion. The system has got a good verification and shows the superior performances in the of the power system. Keywords Power system; Relay protection; Virtual instruments; LabVIEW; Data acquisition card III 燕山大学工学硕士学位论文 IV 目 目 录 录 摘要 ················································································································ Ⅰ Abstract ········································································································· Ⅱ 第 1 章 绪论 ···································································································· 1 1.1 继电保护概述······················································································· 1 1.2 虚拟仪器概述······················································································· 2 1.2.1 虚拟仪器概念 ················································································· 2 1.2.2 国内外发展现状 ············································································· 3 1.2.3 虚拟仪器技术的意义 ····································································· 4 1.3 本课题的研究意义 ··············································································· 5 1.4 本文的研究内容··················································································· 6 第 2 章 数字滤波器及计算机算法 ································································· 7 2.1 数字滤波器 ·························································································· 7 2.1.1 数字滤波器概述 ············································································· 7 2.1.2 数字滤波器分类 ············································································· 8 2.1.3 数字滤波器的传统设计方法 ······················································· 10 2.2 正弦函数算法····················································································· 11 2.2.1 采样值积算法 ··············································································· 12 2.2.2 导数算法······················································································· 14 2.3 傅氏算法 ···························································································· 16 2.4 保护功能算法····················································································· 17 2.4.1 移相算法······················································································· 17 2.4.2 序分量算法··················································································· 17 2.4.3 继电器算法··················································································· 18 2.4.4 相电流突变量算法 ······································································· 20 2.5 各种算法的比较················································································· 21 2.6 本章小结 ···························································································· 22 第 3 章 系统硬件 ·························································································· 23 3.1 采集卡的概述····················································································· 23 3.1.1 USB 接口的优点 ·········································································· 23 3.1.2 采集卡的性能和技术指标 ··························································· 24 3.1.3 采集卡的主要组成 ······································································· 25 3.2 采集卡的工作原理 ············································································· 25 V 燕山大学工学硕士学位论文 3.2.1 A/D 工作模式 ··············································································· 26 3.2.2 A/D 转换启动控制 ······································································· 26 3.2.3 板上转换定时器 ··········································································· 27 3.2.4 FIFO 数据和状态 ········································································· 27 3.3 采集卡的驱动程序安装 ····································································· 28 3.3.1 安装步骤 ······················································································ 28 3.3.2 安装结果确认··············································································· 29 3.4 采集卡与 LabVIEW 驱动程序接口 ··················································· 29 3.4.1 内置式驱动程序 ··········································································· 30 3.4.2 外挂式驱动程序 ··········································································· 31 3.5 本章小结 ···························································································· 32 第 4 章 系统的软件 ······················································································ 33 4.1 LabVIEW 简介 ··················································································· 33 4.1.1 LabVIEW 的概念 ········································································· 33 4.1.2 LabVIEW 软件的特点 ································································· 34 4.1.3 LabVIEW 的组成部分 ································································· 35 4.1.4 基于 LabVIEW 的虚拟仪器设计方法 ········································· 37 4.2 继电保护系统软件的编程 ································································· 38 4.2.1 相电流突变量元件 ······································································· 38 4.2.2 功率方向继电器 ··········································································· 40 4.2.3 阻抗继电器··················································································· 42 4.2.4 故障类型的判断 ··········································································· 46 4.3 本章小结 ···························································································· 48 第 5 章 基于 LabVIEW 的继电保护设计 ····················································· 49 5.1 系统网络结构 ···················································································· 49 5.2 数据采集及滤波的设计 ····································································· 49 5.3 纵联差动保护的设计 ········································································· 52 5.4 零序保护与距离保护的设计 ····························································· 55 5.5 实验步骤 ···························································································· 58 5.6 本章小结 ···························································································· 58 结论 ················································································································ 60 参考文献 ········································································································ 62 攻读硕士学位期间承担的科研任务与主要成果 ·········································· 66 致谢 ················································································································ 67 作者简介 ········································································································ 68 VI 第 1 章 绪论 第 1 章 绪论 1.1 继电保护概述 电力系统由发电机、变压器、母线、输配电线路及用电设备组成。各 电气元件及系统整体一般处于正常运行状态,但也可能出现故障或异常运 行状态,如短路、断线、过负荷等状态。故障和异常运行情况若不及时处 理或处理不当,就可能在电力系统中引起事故,造成人员伤亡和设备损坏, 使用户停电、电能质量下降到不能容许的程度。 为防止事故发生,电力系统继电保护就是装设在每一个电气设备上, 用来反映它们发生的故障和异常运行情况,从而动作于断路器跳闸或发出 信号的一种有效的反事故装置。 继电保护的主要任务是自动地、有选择地、快速地将故障元件从电力 系统中切除,使故障元件免于继续遭受损害;当被保护元件出现异常运行 状态时,保护装置一般经一定延时动作于发出信号,根据人身和设备的要 求,必要时动作于跳闸[1]。 继电保护技术是随着电力系统的发展而发展起来的。20世纪初,继电 器开始广泛应用于电力系统的保护中,这个时期可认为是继电保护技术发 展的开端。从20世纪50年代到90年代末,在40余年的时间里,继电保护技 术经历了四个发展阶段:从电磁式保护装置到晶体管式继电保护装置,到 集成电路继电保护装置,再到微机继电保护装置。与此同时,构成继电保 护装置的元件、材料等也发生了巨大的变革,并且理论上也得到较大的发 展。20世纪50年代,我国在引进并消化了国外先进的电磁式继电器制造技 术的基础上,完成了我国的电磁型继电保护装置的设计和制造,其主要是 由各个电磁型继电器组成,这阶段在保护的理论上也有了较大的发展,建 成了继电保护研究、设计、制造、运行和教学的完整体系。自20世纪50年 代末,我国已经进行了晶体管继电保护的研究工作,到20世纪70年代,晶 体管保护进入了一个广泛运用的时间,特别是对110 kV以上线路的线路保 1 燕山大学工学硕士学位论文 护上的运用。从20世纪70年代中期,基于集成运算放大器的集成电路保护 已开始研究,到20世纪80年代末集成电路保护已形成完整系列,逐渐取代 晶体管保护,到20世纪90年代中期,集成电路保护在220 kV以上线路上已 全面使用。从三个阶段来看,由于我国电力工业发展(特别是在20世纪90年 代初期)较慢的问题,造成了三个阶段的继电保护装置并列使用的局面,由 于继电保护专业人员素质差距较大,造成保护装置的不正确动作也较多。 从80年代初期,部分电力研究院及高校开始着眼微机保护,并在20世纪80 年代末至20世纪90年代中期,微机保护进入一个快速发展的阶段,在电力 系统的各个方面及各种电压等级上均有较大的发展,如线路保护、发电机 保护、变压器保护、励磁调节系统等。至此,各种不同原理、性能优良、 功能齐全、可靠性高的微机保护装置已全面运用在电力系统中,可以这样 说从20世纪90年代后期起,我国电力系统的继电保护已进入了微机保护时 代[2]。 我国电力系统继电保护技术经历了电磁型保护、晶体管保护、集成电 路保护、微机保护四个阶段。随着电力系统的高速发展和计算机技术、通 信技术的进步,继电保护技术向着计算机化、网络化、智能化、保护、控 制、测量和数据通信一体化的方向发展,各类新技术的使用将使继电保护 技术的发展有着更广阔的前景。 1.2 虚拟仪器概述 1.2.1 虚拟仪器概念 虚拟仪器(Virtual Instruments, VI)是日益发展的计算机硬件、软件和总 线技术在向其它技术领域密集渗透的过程中,与测试技术、仪器技术密切 结合,共同孕育出的一项新成果[3]。它的出现彻底改观了传统检测设备更 改麻烦、升级困难的问题,也破除了传统仪器的功能由厂家定义、用户无 法改变的模式。虚拟仪器技术给仪器设计者和仪器用户一个充分发挥自己 才能和想象力的空间,用户可以随心所欲地根据自己的需求,设计出自己 的系统,以满足多种多样的应用需要。虚拟仪器的强大功能和灵活特性, 2 第 1 章 绪论 使得它在仪器测量领域的应用前景十分广阔。由于它以软件为核心,主要 依靠软件来实现仪器系统的功能,因此虚拟仪器系统的体积小,生产成本 低,开发与生产周期短,智能化功能强,产品的技术性能好,利润率高。 在当今仪器仪表界, 软件就是仪器”、 软件就是系统”的观念已经被人们 普遍接受[4]。 所谓虚拟仪器是指具有虚拟仪器面板的个人计算机,它由通用计算机、 模块化功能硬件和控制专用软件组成。在虚拟仪器系统中,运用计算机灵 活强大的软件代替传统的某些部件,用人的智力资源代替物资资源。其本 质是利用计算机强大的运算功能、图形环境和在线帮助功能,建立具有良 好人机交互功能的虚拟仪器面板,完成对仪器的控制、数据分析与显示, 通过一组软件和硬件,实现完全由用户定义,适合不同应用环境和对象的 各种功能[5]。它是一种既有普通仪器的基本功能,又有普通仪器没有的特 殊功能的高档低价的新型仪器。 在虚拟仪器中,硬件是软件赖以运行的物理环境,它仅仅是为了解决 信号的输入和输出,软件才是仪器的核心,用户只要通过调整或修改仪器 的软件,便可方便地改变或增减仪器系统的功能和规模,甚至仪器的性质。 虚拟仪器的出现是仪器发展史上的一场革命,代表着仪器发展的最新 方向和潮流。它是信息技术的一个重要领域,对科学技术的发展和工业生 产将产生不可估量的影响。经过十几年的发展,虚拟仪器技术的内涵不断 丰富,同时外延也不断扩展。目前,它己具有 GPIB(General Purpose Interface Bus) , DAQ(Data Acquisition) , VXI(VME Extension for Instrument) 和 PXI(PCI Extension for In展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




噶米hv基于LabVIE的电力系统继电保护计.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3683219.html