分享
分销 收藏 举报 申诉 / 6
播放页_导航下方通栏广告

类型整除的性质和特征.doc

  • 上传人:a199****6536
  • 文档编号:3367491
  • 上传时间:2024-07-03
  • 格式:DOC
  • 页数:6
  • 大小:24.50KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    整除 性质 特征
    资源描述:
    整除的性质和特征     整除问题是整数内容最基本的问题。理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。   一、整除的概念:   如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。整除属于除尽的一种特殊情况。   二、整除的五条基本性质:   (1)如果a与b都能被c整除,则a+b与a-b也能被c整除;   (2)如果a能被b整除,c是任意整数,则积ac也能被b整除;   (3)如果a能被b整除,b能被c整除,则积a也能被c整除;   (4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;   (5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。   三、一些特殊数的整除特征:   根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。   (1)如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征。   ①若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除;   ②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;   ③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除。   【推理过程】:   2、5都是10的因数,根据整除的基本性质(2),可知所有整十数都能被10、2、5整除。任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质(1),则这个数能被2或5整除。   又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质(1),可以推导出上面第②条、第③条整除特征。   同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推。   (2)若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除。   【推理过程】:   因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几。因此,对于任意整数ABCDE…(_______________)都可以写成下面的形式(n为任意整数):   9n+(A+B+C+D+E+……)   9n一定能被3或9整除,根据整除的基本性质(1),只要这个数各位上的数字和(A+B+C+D+E+……)能被3或9整除,这个数就能被3或9整除。   (3)用“截尾法”判断整除性。   ①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;   ②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;   ③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;   ④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;   ⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除。   根据整除的基本性质(3),以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止。   【推理过程】:   设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数。   一个数截尾减2后,所得数为(x-2y)。因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了(x-2y)个10。如下式:10x-20y+y-y﹦(x-2y)×10﹦(10x+y)-21y。   根据整除的基本性质,如果(x-2y)能被7整除,则(x-2y)×10就能被7整除,即(10x+y)-21y能被7整除,21y是7的倍数,可以推出原数(10x+y)一定能被7整除。   “截尾加4”就是原数截去1个y、加上40个y,总共加了39y(13的倍数),得到(x+4y)个10,“截尾加4”所得(x+4y)如果能被13整除,原数必能被13整除。   同理,“截尾减1”就是原数减去了11个y(11的倍数),原数剩下(x-y)个10,“截尾减1”所得(x-y)能被11整除,原数必能被11整除;   “截尾减5”就是原数减去了51个y(17的倍数),原数剩下(x-5y)个10,“截尾减5”所得(x-5y)能被17整除,原数必能被17整除;   “截尾加2”就是原数加了19y(19的倍数),得到(x+2y)个10,“截尾加2” 所得(x+2y)如果能被19整除,原数必能被19整除。   依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等。   (4) “截尾法”的推广使用。   ①若一个数的末三位数与末三位之前的数字组成的数相减之差(大数减小数)能被7、11或13整除,则这个数一定能被7、11或13整除;   ②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除。(比较适合对五位数进行判断)   【推理过程】:   ①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x为任意整数。   当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到(x-y)。这里x减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下(x-y)个1000。如下式:   1000x-1000y+y-y﹦1000(x-y)﹦(1000x+y)-1001y   7×11×13﹦1001,7、11和13都是1001的因数。   综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到(x-y)能被7、11或13整除,即(1000x+y)-1001y能被7、11或13整除,则原数必能被7、11或13整除。   当y大于x时,可得1000(y-x)﹦1001y-(1000x+y),如果(y-x)能被7、11或13整除,则原数必能被7、11或13整除。   ②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x为任意整数。末四位与之前数字组成数的5倍相减之差即(y-5x)。   10000(y-5x)﹦1005y-5(10000x+y)   因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即(y-5x)能被23或29整除,即10000(y-5x)能被23或29整除,则原数必能被23或29整除。   依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等。   (5)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。   【推理过程】:   一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几。一个整数奇数位上每个计数单位除以11都“缺1”(余数为10),如10、1000、100000……等,除以11都“缺1”, 因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几。   “移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:整除的性质和特征.doc
    链接地址:https://www.zixin.com.cn/doc/3367491.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork