分享
分销 收藏 举报 申诉 / 22
播放页_导航下方通栏广告

类型专题复习球与球体.doc

  • 上传人:精***
  • 文档编号:3127396
  • 上传时间:2024-06-19
  • 格式:DOC
  • 页数:22
  • 大小:545.50KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题 复习 球体
    资源描述:
    2016年高考专题复习--球与球体 01.25 典型例题1——球的截面 例1 球面上有三点、、组成这个球的一个截面的内接三角形三个顶点,其中,、,球心到这个截面的距离为球半径的一半,求球的表面积. 【练习】过球表面上一点引三条长度相等的弦、、,且两两夹角都为,若球半径为,求弦的长度. 典型例题2——球面距离 例2 过球面上两点作球的大圆,可能的个数是(  ). A. 有且只有一个  B.一个或无穷多个 C.无数个     D.以上均不正确 例3 球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过3个点的小圆的周长为,求这个球的半径. 例4 、是半径为的球的球面上两点,它们的球面距离为,求过、的平面中,与球心的最大距离是多少? 典型例题3——其它问题 例5.自半径为的球面上一点,引球的三条两两垂直的弦,求的值. 例6.试比较等体积的球与正方体的表面积的大小. 典型例题4——球与几何体的切、接问题 例7 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少? 例8.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比. 例9.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离. 例10.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小. 作业 1. 正三棱锥的高为1,底面边长为,正三棱锥内有一个球与其四个面相切.求球的表面积与体积. 2. 求球与它的外切圆柱、外切等边圆锥的体积之比. 3 在球心同侧有相距的两个平行截面,它们的面积分别为和.求球的表面积. 【高考真题】 1.(2010四川理数)(11)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、 分别 与球面交于点M,N,那么M、N两点间的球面距离是 (A) (B) w_w_w(C) (D) 2.(2010湖北文数)14.圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是 cm. 3.(2009全国卷Ⅰ文)已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于__________________. A B O1 O 4.(2009陕西卷文)如图球O的半径为2,圆是一小圆,,A、B是圆上两点,若=,则A,B两点间的球面距离为 . 5.(安徽卷理16文16)已知在同一个球面上,若,则两点间的球面距离是 6.(江西卷文15)连结球面上两点的线段称为球的弦.半径为4的球的两条弦的长度分别等于、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为 . 7.(辽宁卷理14文14)在体积为的球的表面上有A,B,C三点, AB=1,BC=,A,C两点的球面距离为,则球心到平面ABC的距离为_________. 8.(天津卷理12)一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 . 9.(浙江卷理14文15)如图,已知球O点面上四点A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,则球O点体积等于___________。 2016年高考专题复习----球与球体 例1分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式求出球半径. 解:∵,,, ∴,是以为斜边的直角三角形. ∴的外接圆的半径为,即截面圆的半径, 又球心到截面的距离为,∴,得. ∴球的表面积为 说明:涉及到球的截面的问题,总是使用关系式解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量. 【练习】由条件可抓住是正四面体,、、、为球上四点,则球心在正四面体中心,设,则截面与球心的距离,过点、、的截面圆半径,所以得. 例2 分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B 例3分析:利用球的概念性质和球面距离的知识求解. 设球的半径为,小圆的半径为,则,∴. 如图所示,设三点、、,为球心,.又∵,∴是等边三角形,同样,、都是等边三角形,得为等边三角形,边长等于球半径.为的外接圆半径,, . 说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题. 例4 分析:、是球面上两点,球面距离为,转化为球心角,从而,由关系式,越小,越大,是过、的球的截面圆的半径,所以为圆的直径,最小. 解:∵球面上、两点的球面的距离为. ∴,∴.当成为圆的直径时,取最小值,此时,取最大值,, 即球心与过、的截面圆距离最大值为. 说明:利用关系式不仅可以知二求一,而且可以借此分析截面的半径与球心到截面的距离之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角有关,而球心角又直接与长度发生联系,这是使用或者求球面距离的一条基本线索. 例5.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联. 解:以为从一个顶点出发的三条棱,将三棱锥补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径. =. 说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算. 例6.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系. 解:设球的半径为,正方体的棱长为,它们的体积均为, 则由,,由得. .. ,即. 例7 分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解. 解:如图作轴截面,设球未取出时水面高,球取出后,水面高 ∵,,则以为底面直径的圆锥容积为 ,球取出后水面下降到,水体积为. 又,则, 解得. 例8分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的. 解:如图,正四面体的中心为,的中心为,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设,正四面体的一个面的面积为.依题意得, 又即. 所以.. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径(为正四面体的高),且外接球的半径. 例9.分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2. 解:四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为. 例10.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察与和棱长间的关系即可. 解:如图2,球心和在上,过,分别作的垂线交于 .图2 则由得. , . (1)设两球体积之和为, 则 = = 当时,有最小值.当时,体积之和有最小值. 作业 解:如图,球是正三棱锥的内切球,到正三棱锥四个面的距离都是球的半径.是正三棱锥的高,即.是边中点,在上, 的边长为,∴. ∴ 可以得到. 由等体积法, ∴ 得:, ∴. ∴. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径来求出,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法. 2.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系. 解:如图,等边为圆锥的轴截面,此截面截圆柱得正方形,截球面得球的大圆圆.设球的半径,则它的外切圆柱的高为,底面半径为;, ,∴,, , ∴. 3. 分析:可画出球的轴截面,利用球的截面性质,求球的半径. 解:如图为球的轴截面,由球的截面性质知,,且若、分别为两截面圆的圆心,则,.设球的半径为.∵,∴ 同理,∴设,则.在 中,;在中,,∴,解得,∴,∴∴.∴球的表面积为. 【高考真题】1.解析:由已知,AB=2R,BC=R,故tan∠BAC= cos∠BAC= 连结OM,则△OAM为等腰三角形 AM=2AOcos∠BAC=,同理AN=,且MN∥CD w_w_w.而AC=R,CD=R 故MN:CD=AN:AC w_Þ MN=, 连结OM、ON,有OM=ON=R 于是cos∠MON= 所以M、N两点间的球面距离是 w_w_w.答案:A 2.【答案】4 【解析】设球半径为r,则由可得,解得r=4. 3.【解析】本小题考查球的截面圆性质、球的表面积,基础题。 解:设球半径为,圆M的半径为,则,即由题得,所以。 4.答案: 解析:由,=2由勾股定理在中 则有, 又= 则 所以在, ,则,那么 . 由弧长公式得. 5.解: 如图,易得,,,则此球内接长方体三条棱长为AB、BC、CD(CD的对边与CD等长),从而球外接圆的直径为,R=4则BC与球心构成的大圆如图,因为△OBC为正三角形,则B,C两点间的球面距离是。 6.解析:易求得、到球心的距离分别为3、2,类比平面内圆的情形可知当、与球心共线时,取最大值5。 7.解析:本小题主要考查立体几何球面距离及点到面的距离。设球的半径为,则,∴设、两点对球心张角为,则,∴,∴,∴为所在平面的小圆的直径,∴,设所在平面的小圆圆心为,则球心到平面ABC的距离为答案: 8.解析:由得,所以,表面积为. 9.解析:本小题主要考查球的内接几何体体积计算问题。其关键是找出球心,从而确定球的半径。由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边。所以DC边的中点就是球心(到D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:专题复习球与球体.doc
    链接地址:https://www.zixin.com.cn/doc/3127396.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork