分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型偏最小二乘法.doc

  • 上传人:a199****6536
  • 文档编号:3109267
  • 上传时间:2024-06-18
  • 格式:DOC
  • 页数:4
  • 大小:114KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    最小二乘法
    资源描述:
    偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。近年来 , 随着 PLS方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。 由于 PLS方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。 本文主要介绍PLS方法在光谱定性分析方面的原理及应用 实例 。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS特别适用于自变量的个数多于试样个数的情况。在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X的本征矢量或因子数测试中,所处理的仅为X矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y中亦可能包含非有用的信息。所以很自然的一种想法是,在矩阵X因子的测试中应同时考虑矩阵Y的作用。偏最小二乘正是基于这种思想的一种回归方法。 偏最小二乘和主成分分析很相似,其差别在于用于描述变量Y中因子的同时也用于描述变量X。为了实现这一点,在数学上是以矩阵Y的列去计算矩阵X的因子,与此同时,矩阵Y的因子则由矩阵X的列去预测。其数学模型为: 此处,T和U的矩阵元分别为X和Y的得分,而P和Q的矩阵元分别为X和Y的装载,E和F分别为运用偏最小二乘模型法去拟合X和Y所引进的误差。 T = XP(主成分分析) TP’ = XPP’ PP’ = I X = TP’(因子分析) 在理想的情况下,X中误差的来源和Y中的误差的来源完全相同,即影响X与Y的因素相同。但实际上,X中误差与Y中误差并不相关,因而t≠u,但当两个矩阵同时用于确定因子时,则X和Y的因子具有如下关系: u = bt + e 式中b所表征的即为u和t间的内在关系。 为了使因子T既可描述X矩阵,同时又可描述Y矩阵,则需采取折衷方案,即将T进行坐标旋转。显然,坐标旋转后的T因子对于X矩阵的表达已不再是最优的状况。 如假设X矩阵和Y矩阵均为6*3,即行为6,列为3。在列空间,X和Y矩阵的行分别示于图6.1(上部)。PLS第一个因子(t和u)方向在各自的空间均可解释试样的最大偏差。若PLS模型是正确的,将t对u作图则可得一线性关系。事实上,PLS要将各自空间中的因子进行折衷以增加t对u的相关性(图6.1下部)。由于这种折衷才可使所得数学模型较好地同时描述X 和Y。在行空间,情况与列空间类同。 如有矩阵(见§ 6.2): 数据的预处理为:每列减去相应列的平均值(mean-centered),PLS所得结果为: 将t 对u作图(图6.2)可显示出二者的线性关系,其斜率b = 0.53。 图6.2 矩阵X的因子t对矩阵Y的因子u作图 对于未知试样的预测,要应用X和Y的得分模型及相关性bi。 若有L个因子,则bl为表达第l个因子相关性的系数,其步骤为:由未知试样的测定值x末通过校正模型(式(6.4)计算出t末,进而由(式6.6)及bl可计算未知试样的得分矢量u末,最后由校正模型(式6.5)得未知试样含量。 u = bt + e
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:偏最小二乘法.doc
    链接地址:https://www.zixin.com.cn/doc/3109267.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork