2023年行测数学运算真题合集.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年行测 数学 运算 真题合集
- 资源描述:
-
各地数学运算真题速解合集 08广东: 6. 一项任务甲做要半小时完毕,乙做要45 分钟完毕,两人合作需要多少分钟完毕? A.12 B.15 C.18 D.20 解:直接设90总量,两人每分钟分别是3和2。因此90/(3+2)=18。 7. 2 + 3 尾数是( ) A.1 B.3 C.5 D.7 解:求尾数题目,底数留个位,指数除以4留余数(余数为0看为4), 例如20683847 就是留底数个位8,3847除以4得数是余3,取3,就变成求83次方尾数; 因此在这个题目中 除以4余数为0,取4; 因此等于变成24次方+34次方,尾数是7。 8. 若在边长20 厘米正立方体表面上挖一种边长为10 厘米正方体洞,问其表面积增长多少平方厘米?A.100 B.400 C.500 D.600 解:实际增长了边长10厘米4个面面积,因此4*10*10=400。 9. 甲乙同步从A 地步行出发往B 地,甲60 米/分钟,乙90 米/分钟,乙抵达B 地折返 和甲相遇时,甲还需再走3 分钟才抵达B 地,求AB 两地距离?A.1350 B.1080 C.900 D.750 解:甲需要多走3分钟到B地,3*60=180米, 速度比是2:3,因此旅程比也是2:3, 设全长X米,则(X-180)/(X+180)=2/3,求出X=900, 实际也是选个180倍数选项,排除AD。 10. 2 年前甲年龄是乙年龄2 倍,5 年前乙年龄是丙年龄1/3,丙今年11 岁,问甲 今年几岁?A.12 B.10 C.9 D.8 解:五年前乙是(11-5)/3=2岁,因此今年是7岁,两年前是5岁。 因此2年前甲是10岁,今年是12岁,选A。 11. 某人工作一年酬劳是18000 元和一台洗衣机,她干了7 个月不干了,得到9500 元和一台洗衣机,这台洗衣机价值多少钱?A.8500 B.2400 C. D.1500 解:7个月得到9500元和一台洗衣机,因此选项加上9500后能被整除只有2400, 选B。 12. 每次加同样多水,第一次加水浓度15%,第二次加浓度12%,第三次加浓度为多 少?A.8% B.9% C.10% D.11% 解:8%跟11%一种相差太大,一种相差太小,排除AD。 12%跟15%相差3%,9%也跟12%相差3%,添加后浓度差一定会变,因此排除B,选C。 上面解法也许有人会认为过于极端,不过不停加水后,浓度差肯定会逐渐变小, 此外可以这样解: 由于溶质质量一直不会变化,因此设盐水有60克盐(15跟12最小公倍数) 则第一次加水后溶液是60/0.15=400克,第二次加水后溶液是60/0.12=500克, 因此可知是加了100克水,第三次加水后浓度是60/(500+100)=0.1,也就是10%,选C。 13. 60 个人里面有12 个人穿白衣服蓝裤子,有34 个人穿黑裤子,有29 人穿黑上衣, 求黑裤子黑上衣多少人?A.13 B.14 C.15 D.20 解:直接容斥定理:34+29-(60-12)=15,选C。 14. 3 个单位要订购300 本书。至少要订购99 本,最多只能订购101 本,求有多种订 购措施?A.6 B.7 C.8 D.9 解:(99,100,101)可以互换位置,这种状况一共有A(3,3)=6种; 再加上(100,100,100)这一种状况,因此有7种,选B。 15. 4 个班不算甲班有131 人,不算丁班有134 人,乙、丙两班总人数比甲、丁两班少 1 人。求4 个班总人数是多少?A.177 B.176 C.257 D.256 解:乙丙丁=131 ,甲乙丙=134, 两式相加,得到甲丁+2乙丙=265,根据乙丙+1=甲丁,代入旁边式子, 因此甲丁+2(甲丁-1)=265。求出甲丁=89,乙丙=88,因此总人数是89+88=177,选A。 conroe解法: 乙、丙两班总人数比甲、丁两班少 1 人,阐明四个班总人数是个奇数,直接淘汰BD。 根据题意可以看出四个班人数不会相差太大,所有差不多,不算甲班另三班有131人,不算丁班有134 人,选项AC里面明显是A。 07广东: 1.地球表面陆地面积和海洋面积之比是29:71,其中陆地四分之三在北半球,那么南、北半球海洋面积之比是多少? A.284:29 B.113:55 C.371:313 D.171:113 解:其实这有点像是考察地理常识题目…观测4个选项,南半球海洋面积不小于北半球,不过不至于相差到像A、B这种靠近2倍甚至10倍,根据常识所有可以直接排除,C项比例太小,排除,因此选D。 常规解法是[50-29/(1-/3/4)]:(50-29*3/4),解得171:113。 2. 小明前三次数学测验平均分数是88分,要想平均分数达到90分以上,她第四次测验至少要多少分?A.98 B.96 C.94 D.92 解:前三次平均88,要想4次达到90分,一次多了2分,因此三次多了6分,选B。 3.一种长方体长、宽、高恰好是三个持续自然数,并且它体积数值等于它所有棱长之和2倍,那么这个长方体表面积是多少? A.74 B.148 C.150 D.154 解:设宽x,长x-1,高x+1,则x(x-1)(x+1)=2*4(x+x-1+x+1),整顿得x2=25,因此x=5, 表面积则为2(5*6+4*5+4*6)=148,选B。 PS:这里要注意选项设置,由于最终计算是需要乘以2,出题人常常就会设置这样陷阱,后3项数值相差不大,AB两个是2倍关系,因此就算蒙时候也应当蒙B, 这也是蒙题一种技巧。 4.甲、乙、丙、丁四人共同做一批纸盒,甲做纸盒是此外三人做总和二分之一,乙做是此外三人总和1/3,丙做是此外三人做总和1/4,丁一共做了169个,问甲做了多少个纸盒?A.780 B.450 C.390 D.260 解:根据题目可以懂得甲、乙、丙三人分别做了总数1/3、1/4、1/5, 因此总数是169/(1-1/3-1/4-1/5)=780,甲就做了780/3=260,选D。 5.有浓度为4%盐水若干克,蒸发了部分水分后浓度变成10%,再加入300克4%盐水后,浓度变为6.4%盐水,问最初盐水多少克?A.200 B.300 C.400 D.500 解:4%跟10%最小公倍数20,因此取个特值20克盐,直接代入20/0.04=500,选D。 6.某校参与数学竞赛有120名男生,80名女生,参与语文有120名女生,80名男生,已知该校总共有260名学生参与了竞赛,其中有75名男生两科所有参与了,问只参与数学竞赛而没有参与语文女生有多少人? A.65 B.60 C.45 D.15 解:参与两科一共有有2(120+80)-260=140人; 女生参与两科有140-75=65人,因此只参与数学没参与语文女生有80-65=15人。 7.甲早上从某地出发匀速前进,一段时间后,乙从同个地点出发以同样速度同向前进,在上午10点时,乙走了6千米,她们继续前进,在乙走到甲在上午10时抵达位置时,甲共走了16.8千米,问:此时乙走了多少千米?A.11.4 B.14.4 C.10.8 D.5.4 解:根据题意,乙从10点到到甲10点所在位置时,两人走过旅程相等, 因此求出一段是(16.8-6)/2 =5.4, 加上之前走过6千米,总共走过6+5.4=11.4千米。选A。 8.科学家对平海岛屿进行调查,她们先捕捉30只麻雀进行标识,后放飞,再捕捉50只,其中有标识有10只,则这一岛屿上麻雀大概有多少只? A.150 B.300 C.500 D.1500 解:前后比例相等,因此10/50 =30/X,X=150,选A。 9.一批零件,假如第一天甲做,第二天乙做,这样交替做,完毕天数恰好是整数。假如第一天乙做,第二天甲做,这样交替做,做到上次轮番完毕时所用天数后,还剩40个不能完毕,已知甲乙工作效率比是7:3,问甲每天做多少个? A.30 B.40 C.70 D.120 解:甲乙工作效率比是7:3,因此甲是7倍数,只有C符合。 10.水池装有一种排水管和若干个每小时注水量相似注水管,注水管注水时,排水管同步排水,若用12个注水管注水,8小时可注满水池,若用9个注水管,24小时可注满水,目前用8个注水管注水,那么可用多少小时注满水池?A.12 B.36 C.48 D.72 解:经典牛吃草问题,设每小时注水1, 则排水管每小时排水量是(24*9-12*8)/(24-8)=7.5, 因此本来水池里水量是(12-7.5)*8=36,因此8个注水管用36/(8-7.5)=72小时,选D。 06广东: 6.1992 是 24 个持续偶数和,问这 24 个持续偶数中最大一种是几? A. 84 B、106 C、108 D、130 解:解:1992/24=83,可以懂得第12个偶数是82,因此82+12*2=106,选B。 7.某商品按定价 80%(八折)发售,仍能获得 20%利润,问定价时期望利润率是多 少? A. 50% B、40% C、30% D、20% 解:定价X,成本Y,则有0.8X=1.2Y,因此X=1.5Y,选A。 8.已知甲 13%为 14,乙 14%为 15,丙 15%为 16,丁 16%为 17,则甲、乙、丙、 丁四个数中最大数是: A.甲 B.乙 C.丙 D.丁 解:只需要比较甲乙,也就是14/0.13 和15/0.14, 甲/乙=14/0.13/(15/0.14)>1,因此甲比乙大。选A。 9.甲、乙、丙三人,甲每分钟走 50 米,乙每分钟走 40 米,丙每分钟走 35 米,甲、乙从 A 地,丙从 B 地同步出发,相向而行,丙碰到甲 2 分钟后碰到乙,那么,A. B 两地相距多少 米? A. 250 米 B.500 米 C. 750 米 D. 1275 米 解:碰到甲2分钟后碰到乙,丙乙一起走旅程是2*(40+35)=150, 则甲丙相遇时间是150/(50-40)=15分钟,因此全长是(50+35)*15=1275,选D。 heartrown 解法: 由题目懂得甲丙相遇过,那就是说v=50+35=85,选项里面惟有1275是其倍数,选D。 10.一批商品,按期望获得 50%利润来定价,成果只销售掉 70% 商品,为尽早销售掉 剩余商品,商店决定按定价打折发售,这样所获得所有利润,是本来所期望利润 82% , 问打了多少折扣? A. 4 折 B. 6 折 C. 7 折 D.8 折 解:假设一共有100件,一件1元,折扣X,则(1.5X-1)*30+0.5*70=50*0.82,求得X=0.8,选D。 11.一种俱乐部,会下象棋有 69 人,会下围棋有58人,两种棋所有不会下有 12 人, 两种棋所有会下有 30 人,问这个俱乐部一共有多少人? A.109 人 B.115 人 C.127 人 D.139 人 解:还是容斥定理,A+B-AB所有会=总 - AB所有不会, 69+58-30=X-12,解得X=109,选A。 12.园林工人要在周长 300 米圆形花坛边等距离栽树。她们先沿着花坛边每隔 3 米挖一 个坑,当挖完 30 个坑时,忽然接到告知:改为每隔 5 米栽一棵树。这样,她们还要挖多少 个坑才能完毕任务? A.43 个 B.53 个 C.54 个 D.60 个 解:改成每隔5米,需要300/5=60个坑,由于挖完第30个坑时候实际才挖了87米,因此加上先挖第一种坑尚有背面15、30、45、60、75米这些距离坑可以运用,要减去6个,60-6=54,选C。 13.某市居民生活用电每月原则用电量基础价格为每度 0.60 元,若每日用电量超过原则 用电量,超过部分按基础价格 80%收费,某户九月份用电 100 度,共交电费 57.6 元,则 该市每月原则用电量为: A.60 度 B。70 度 C. 80 度 D. 90 度 解:直接列方程以便一点,0.6x+(100-x)*0.6*0.8=57.6,求得X=80,选C。 calvinlin解法: 假设:九月份用电100度,每度根据0.6元计算,需要60元,但实际收费是57.6元,那么差额2.4元肯定有一部分是超过用电量所导致。那直接用差额2.4元 除以 差价(0.6*0.2),即2.4元/0.12元=20度。那么,从四个答案中可以直接得到C. 80度。 14.有一种浇灌用中转水池,一直开着进水管往里灌水,一段时间后,用 2 台抽水机排水, 则用 40 分钟能排完;假如用 4 台同样抽水机排水,则用 16 分钟排完。问假如计划用 10 分钟将水排完,需要多少台抽水机? A.5 台 B.6 台 C.7 台 D.8 台 解:同上面同样牛吃草问题,设每分钟排水1, 则每分钟进水(2*40-4*16)/(40-16)=2/3, 本来有水(2-2/3)*40=160/3,因此10分钟排完,需要160/3/10+2/3=6,选B。 15.一种容器内有若干克盐水。往容器内加入部分水,溶液浓度变为 3%,再加入同样多 水,溶液浓度为 2%,问第三次再加入同样多水后,溶液浓度是多少? A.1.8% B.1.5% C.1% D.0.5% 解:2%、3%最小公倍数6,可以设有盐6克,则最先有6/0.03=200克溶液,后来是6/0.02=300克溶液,因此加了100克水,第三次则是6/(300+100)=0.015,选B。 09国考: 106.北京奥运会八月八日晚上八点举行,问全世界和中国在同一天有多少国家? A.没有一种 B.所有国家 C.所有国家二分之一如下 D.二分之一以上 解:这一题当时看到了还认为自己提前做了常识题… 同一种世界,同一种梦想…选择这个时间自然是全世界共同庆祝…选B。 不过D选项1/2以上也包括所有,因此还是有点争议吧。 107.小王忘掉了好友 号最终两位,只记得 号倒数第一位是奇数,那么小王最多要拨打多少次才能保证打通好友 ?( ) A. 90 B. 50 C. 45 D. 20 解:倒数第一位奇数有5个,因此是5*10=50次,选B。 108.用六位数字表达日期,例如980716表达1998年7月16日,用这种措施表达 所有日期,那么整年中六个数字所有不同样日期有几天?( ) A. 12 B. 29 C. 0 D. 1 解:要所有不同样,23年,那么月份0开头和10、11所有不行,只能选择12,这样话日期0、1、2开头所有不行,30、31也不行,因此有0个,选C。 109.甲乙共有图书260本,其中甲有专业书13%,乙有专业书12.5%,那么甲非专业书有多少本?( ) A. 75 B. 87 C. 174 D. 67 解:甲有专业书13%,因此甲非专业书肯定是87倍数,只有BC两选项, <1>当甲非专业书是87时候,甲一共就是100,乙就是260-100=160, <2>当甲非专业书是174时候,甲一共就是200。乙就是260-200=60; 由于乙有专业书12.5%,当作1/8,因此乙书总数能被8整除,排除<2>状况, 选择B。 110.一条隧道,甲用20天时间可以挖完,乙用10天时间可以挖完,目前根据甲挖一天,乙再接替甲挖一天,然后甲再接替乙挖一天…如此循环,挖完整个隧道需要多少天? ( ) A. 14 B. 16 C. 15 D. 13 解:设总共有20工作量,则甲一天做1,乙一天做2,因此20/(1+2)=6…2,两人交替做了12天,还剩余2工作量,甲接着做1天,剩余1量给乙做,因此一共是14天,选A。 111.甲乙有相似数目的萝卜,其中甲计划卖1元2个,乙计划卖1元3个,后来甲乙一起以2元5个价钱把萝卜卖了出去,成果比预期收入少了4元钱。问:甲乙共有萝卜多少个?( ) A. 420 B. 120 C. 360 D. 240 解:依题意可得,X/4+X/6 -4=2X/5,解得X=240,选D。 也可以用代入法,选个中间数开始代起。 112.甲购置3支签字笔、7支圆珠笔、1支铅笔共花费32元,乙购置同样价格笔,其中签字笔4支,圆珠笔10支,铅笔1支,共用去43元,问:单独购置签字笔、圆珠笔、铅笔各一支共需多少钱?( ) A. 21 B. 11 C. 10 D. 17 解:3,7,1-----32 4,10,1----43 因此上面*3-下面*2=32*3-43*2=10,刚好是1,1,1价格,选C。 113.一种溶液,蒸发掉一定量水后,溶液浓度变为10%,再蒸发掉同样多水后,溶液浓度变为12%,第三次蒸发掉同样多水后,溶液浓度将变为多少?( ) A. 14% B. 17% C. 16% D. 15% 解:设溶质盐是60(10,12最小公倍数),因此第一次蒸发后溶液是60/0.1=600, 第二次60/0.12=500,因此每次蒸发600-500=100水, 则第三次蒸发后浓度是60/(500-100)=0.15,选D。 114.某企业甲乙两个营业部共有50人,其中32人为男性,已知甲营业部男女比例为5: 3,乙营业部男女比例为2:1,问甲营业部有多少名女职工?( ) A. 18 B. 16 C. 12 D. 9 解:根据两个比例可以懂得50人提成两部分,甲能被8整除,乙能被3整除,50只有8和32符合这个条件, 代入8,则女职工是3,没选项可选,排除,因此甲一共有32人,即女职工是32*3/8=12人,选C。 115.厨师从12种主料中挑出2种,从13种配料中挑选出3种来烹饪某道菜肴,烹饪措施共有7种,那么该厨师最多可以做出多少道不同样菜肴?( ) A. 131204 B. 132132 C. 130468 D. 133456 解:被7整除特性:末3位和前面数字差(大减小)可以被7整除,则整个就能被7整除。 因此只有B符合。 116.图所示,X、Y、Z分别是面积为64、180、160三个不同样形状纸片, 覆盖住桌面总面积是290,其中X和Y、Y和Z、Z和X重叠部分面积 依次是24、70、36,那么阴影部分面积是( )。 A. 15 B. 16 C. 14 D. 18 解:其实就是三者容斥问题,求三者同步重叠部分,设为T, 则有64+180+160-24-70-36+T=290,求得T=16,选B。 117.甲乙丙丁四个队植树造林,已知甲队植树亩数是其他三队植树总亩数四分之一,乙队植树亩数是其他三队植树总亩数三分之一,丙队植树亩数是其他三队植树总亩数二分之一,丁队植树3900亩。那么甲植树亩数是多少?( ) A. 9000 B. 3600 C. 6000 D. 4500 解:甲、乙、丙分别占总数1/5、1/4、1/3,因此四者总数是3900/(1-1/5-1/4-1/3)=18000 因此甲就是18000/5=3600,选B。 论坛“四边”解法: 根据条件,可以懂得甲是四个队伍中至少,接着是丁,然后是乙,丙最大。 因此选个比丁3900小一项,也就是3600。 118.100个人参与7个活动,每人只能参与一种活动,并且每个活动参与人数所有不同样,那么参与人数第四多活动最多有多少人?( ) A. 22 B. 21 C. 24 D. 23 解:要让第四最大,就必需让第四后来最小,因此第五、六、七个活动分别取3人,2人,1人。则前四平均值是(100-6)/4=23.5,因此第四多是22,选A。 119.某市水库水量增长速度是一定,可供全市12万人使用23年,在迁入3万人后来,只能供全市人民使用23年,市政府号召大家节省用水,期望将水库使用寿命延长至30年,那么居民平均需要节省用水量比例是多少?( ) A. 2/5 B. 2/7 C. 1/3 D. 1/4 解:每十二个月新增水量为:(12*20-15*15)/(20-15)=3 则原水量为:20*12-20*3=180,设目前每天用X,则30*15*X-30*3=180,解得 X=3/5 因此应当节省2/5。 “四边”解法: 人数增长了四分之一,用水年数减少了四分之一,可以推出每十二个月增长量其实可以忽视不计。这样,假如要寿命延长二分之一,用水必需减少二分之一,选择最靠近五分之二 120.学校用从A到Z次序给班级编号,再根据班级号码在背面加01、02、03…次序给学生编号,已知从A—K每个班级从15人起每班依次递增1人,后来每班按编号次序依次递减2人,那么第256名同学编号是多少?( ) A. M12 B. N11 C. N10 D. M13 解:从A到K一共15+16+….25=220,因此接下来L班有23人,到L23一共有220+23=243人,剩余256-243=13人所有是M班,因此第256个同学编号是M13。 08国考: 46.若x,y,z是三个持续负整数,并且x>y>z,则下列表达式中正奇数是: A.yz-x B.(x-y)(y-z) C.x-yz D.x(y+z) 解:x>y>z,又是持续负整数,因此x-y=1,y-z=1, 很明显B项(x-y)(y-z)=1,因此选B。 47. 已知____1____ =9/11, 那么x值是: A.-2/3 B. 2/3 C.-3/ 2 D. 3/2 1+ __1__ 3+_1_ x 解:细心一点应当所有没问题,求出X=2/3,选B。 48.{an}是一种等差数列,a3+a7-a10=8,a11-a4=4,则数列前13项之和是: A.32 B.36 C.156 D.182 解:等差数列有个性质:底标差值相等两个数差相等, 即在这道题里面a10-a3=a11-a4,因此a7 = 8+a10-a3= 8+4=12, 13个数等差数列,a7刚好是它们平均值,因此和是12*13=156,选C。 49.相似表面积四面体,六面体,正十二面体和正二十面体,其中体积最大是: A.四面体 B.六面体 C.正十二面体 D.正二十面体 解:表面积相等,面越多越趋近于球体,因此体积也越大,选D。 50.一张面积为2平方米长方形纸张,对折三次后得到小长方形面积是: A.1/2m2 B.1/3m2 C.1/4m2 D.1/8m2 解:对折一次除以2,因此三次是1/4,选C。 51.编一本书书页,用了270个数字(反复也算,如页码115用了2个1和1个5,共3个数字),问这本书一共有多少页? A.117 B.126 C.127 D.189 解:页码问题,要记住:1位数页码用9个数字,10-99两位数页码用180个数字, 因此题目里面除掉一位跟两位数,三位数页码一共有270-180-9=81个数字,81/3=27, 从第100页算起到126页刚好用了81个数字,因此选B。 52.5年前甲年龄是乙三倍,23年前甲年龄是丙二分之一,若用y表达丙目前年龄,下列哪一项能表达乙目前年龄? A.y/6+5 B.5y/3+10 C.(y-10)/3 D.3y-5 解:用个特殊值来假设,例如设丙目前20岁,则23年前丙是10岁,甲是5岁;因此5年前丙是15岁,甲是10岁,乙是10/3岁,因此目前乙是5+10/3岁,很明显是A。 53.为节省用水,某市决定用水收费实行超额超收,原则用水量以内每吨2.5元,超过原则部分加倍收费。某顾客某月用水15吨,交水费62.5元,若该顾客下个月用水12吨,则应交水费多少钱? A.42.5元 B.47.5元 C.50元 D.55元 解:这种题型还是爱慕列方程快一点,设原则X吨,则2.5x+(15-x)*5=62.5,解得X=5, 因此12吨就是2.5*5+(12-5)*5=47.5元,选B。 54.某零件加工厂根据工人完毕合格零件和不合格零件支付工资,工人每做出一种合格零件能得到工资10元,每做一种不合格零件将被扣除5元,已知某人一天共做了12个零件,得工资90元,那么她在这一天做了多少个不合格零件? A.2 B.3 C.4 D.6 解:代入,刚好又是A项,直接迅速处理… 55.小华在练习自然数求和,从1开始,数着数着她发现自己反复数了一种数。在这种状况下,她将所数所有数求平均,成果为7.4,请问她反复那个数是: A.2 B.6 C.8 D.10 解:1-14平均数是7.5,中间加了一种数导致平均数变小成7.4,因此肯定比7.5小部分,选B。 56.共有100个人参与某企业招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上人员能通过考试,请问至少有多少人能通过考试? A.30 B.55 C.70 D.74 解:所有些人一共答对了80+92+86+78+74=410题,一共有500题,因此有90道答错,每个通不过考试人至少要错3道,因此没通过最多有90/3=30人,至少能通过100-30=70人。 57. 一张节目表上原有3个节目,假如保持这3个节目的相对次序不变,再添进去2个新节目,有多少种安排措施? A.20 B.12 C.6 D.4 解:3个节目固定下来,一共有4个空位,因此新加那两个节目放在一起有A(4,1)*2=8种, 不放一起有A(4,2)=12种,一共是12+8=20种,选A。 58.某商场促销,晚上八点后来全场商品在本来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋原价为多少钱? A.550 B.600 C.650 D.700 解:(384.5+100)/0.85*0.95=600,选B。 59.甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。假如5月18日她们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号? A.10月18日 B.10月14日 C.11月18日 D.11月14日 解:其实就是求出6,12,18,30最小公倍数180天再次相遇,因此选D。 60.甲、乙、丙三种货品,假如购置甲3件、乙7件、丙1件需花3.15元,假如购置甲4件、乙10件、丙1件需花4.2元,那么购置甲、乙、丙各1件需花多少钱? A.1.05 B.1.4 C1.85 D.2.1 解:3,7,1----3.15 4,10,1----4.2 上式*3 - 下式*2 = 3.15*3-4.2*2=1.05,刚好是1,1,1钱,选A。 07国考: 46.某高校 年度毕业学生 7650 名,比上年度增长 2 % . 其中本科毕业生比上年度减少 2 % . 而硕士毕业生数量比上年度增长10 % , 那么,这所高校今年毕业本科生有: A .3920人 B .4410人 C .4900人 D .5490人 解:本科毕业生比上年度减少 2 %,因此今年本科生是上年0.98倍,只有4900是0.98倍数,选C。 47. 既有边长1 米一种木质正方体,已知将其放入水里,将有 0 . 6 米浸入水中.假如将其分割成边长0. 25 米小正方体,并将所有小正方体所有放入水中,直接和水接触表内积总量为: A .3. 4平方米 B .9. 6平方米 C .13. 6平方米 D .16 平方米 解:整个正方体可以切成1/(1/4)3=64块, 一种小正方体跟水接触面积是1/4*(0.6*4+1)=1/4*3.4,64块因此再乘以64是3.4*16,直接选C。 48 .把144张卡片平均提成若干盒 ,每盒在 10 张到 40 张之间,则共有( )种不同样分法。 A .4 B .5 C .6 D .7 解:分解质因数,144=2*3*2*3*2*2,因此有12*12,18*8,16*9,24*6,36*4,一共5种。 49 .从一副完整扑克牌中.至少抽出( )张牌.才能保证至少 6 张牌花色相似。 A . 2 1 B . 22 C . 23 D . 24 解:最晦气原则,持续抽了大小王两张,接着抽了每个花色5张,这个时候再抽1张就符合条件。 因此是2+5*4+1=23,选C。 50 .小明和小强参与同一次考试,假如小明答对的题目占题目总数 3 / 4 .小强答对了 27 道题,她们两人所有答对的题目占题目总数2 / 3 ,那么两人所有没有答对的题目共有: A . 3道 B . 4道 C . 5道 D .6 道 解:3,4公倍数12,因此取题目总数是比27大36, 则根据容斥定理:27+27-24=36-X,因此X=6,选D。 51 .学校举行一次中国象棋比赛,有 10 名同学参与,比赛采用单循环赛制,每名同学所有要和其他9 名同学比赛一局.比赛规则,每局棋胜者得 2 分,负者得 O 分,平局两人各得 l 分.比赛结束后,10 名同学得分各不相似,已知: ( 1 )比赛第一名和第二名所有是一局所有没有输过; ( 2 )前两名得分总和比第三名多20 分; ( 3 )第四名得分和最终四名得分和相等. 那么,排名第五名同学得分是: A . 8 分 B . 9 分 C . 10 分 D . 11 分 解:由(1)可以推出一、二名两人之间比赛是平局,因此第一名最多是8*2+1=17分, 第二名最多是7*2+2=16分,由(2)可以推出第三名是16+17-20=13分,单循环总共有10*9/2=45场,每一场两个人得分和肯定是2,一共是45*2=90分, 因后来7名得分是90-17-16-13=44分,因此44-选项后差是偶数,排除AC, 90/10=9,因此第五名比9大,排除B,选D。 52 .某班男生比女生人数多 80%,一次考试后,全班平均成级为 75 分,而女生平均分比男生平均分高 20% ,则此班女生平均分是: A .84 分 B . 85 分 C . 86 分 D . 87 分 解:女生平均分比男生平均分高20%,因此女生平均分是男生1.2倍,只有A项符合。 53. A、.B 两站之间有一条铁路,甲、乙两列火车分别停在 A 站和 B 站,甲火车 4 分钟走旅程等于乙火车 5 分钟走旅程.乙火车上午8 时整从B 站开往A站,开出一段时问后,甲火车从 A 站出发开往 B 站,上午 9时整两列火车相遇.相遇地点离A、.B两站距离比是15:16.那么.甲火车在( ) 从 A 站出发开往 B 站. A .8时12 分 B .8时15 分 C . 8 时 24 分 D . 8 时 30 分 解:甲乙速度比5:4,走过旅程比是15:16,因此时间比是3:4,60/4 *3=45分, 既甲从8时15分开始出发。选B。 54. 32 名学生需要到河对岸去野营,只有一条船,每次 最多载 4 人(其中需 1 人划船).来回一次需 5 分钟。假如9时整开始渡河,9时 17 分时,至少有( )人还在等待渡河。 A .16 B .17 C . 19 D . 22 解:9时—9时17分,一共17分,因此3次来回,15分钟能过9个人,剩余2分钟再过一次4人,但还在河中,因此岸上尚有32-9-4=19人在等待。选C。 55.一名外国游客到北家旅游.她要么上午出去游玩,下午在旅馆休息;要么上午休息,下午出去游玩,而下雨天她只能一天所有呆在屋里。期间,不下雨天数是12天.她上午呆在旅馆天数为 8 天.下午呆在旅馆天教为12 天.她在北京共呆了: A .16天 B .20天 C . 22天 D . 24天 解:不下雨天数是12天,因此游玩了12个半天; 上午呆在旅馆天数为 8 天.下午呆在旅馆天教为12 天,这些是休息半天数为12+8=20, 因此总共是12+20=32个半天=16天,选A。 56.甲、乙两个容器所有有50 厘米深,底面积之比为 5 : 4,甲容器水深 9 厘米,乙容器水深 5 厘米.再往两个容器各注入同样多水,直到水深相等,这时两容器水深是: A.20厘米 B . 25厘米 C . 30厘米 D .35厘米 解:(X-9)*5=(X-5)*4,代入选B。 57. 一篇文章 ,既有甲乙丙三人,假如由甲乙两人合作翻译,需要 10 小时完毕,假如由乙丙两人合作翻译,需要12 小时完毕。目前先由甲丙两人合作翻译4 小时,剩余再由乙单独去翻译,需要12 小时才能完毕,则这篇文章假如所有由乙单独翻译,要( ) 小时可以完毕. A.15 B . 18 C . 20 D .25 解:设总工作量60,则甲乙每小时6,乙丙每小时5,甲丙+2乙=11,即甲丙=11-2乙, 因此4(11-2乙)+12乙=60,求出乙=4,因此所有给乙做需要60/4=15小时,选A。 58.共有 20 个玩具交给小王手工制作完毕.规定,制作玩具每合格一种得 5 元,不合格一种扣 2 元,未完毕不得不扣.最终小王共收到56 元,那么她制作玩具中,不合格共有( )个。 A.2 B . 3 C . 5 D .7 解:首先很明显排除BC。由于56+2*3=62和56+2*5=66所有不是5倍数, 代入D,56+7*2=70,即刚好是14个合格,14+7=21,超过20个,排除, 因此选A。 59.一种车队有三辆汽车, 肩负着五家工厂运送任务,这五家工厂分别需要 7、9、4、10、6 名装卸工,合计 36 名;假如安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多工厂再安排部分装却工就能完毕装卸任务。那么在这种状况下,总共至少需要要( )名装卸工才能保证各厂装卸需求? A.26 B .27 C . 28 D .29 解:规定至少,那么三辆车分别装五家工厂里面最大三个需求量,则可以满足条件,分别装10、9、7, 因此是10+9+7=26,选A。 60. 有一食品店某天购进了 6 箱食品,分别装着饼干和面包,重量分别为 8、9、16、20、22、27 公斤。该店当日只卖出一箱面包,在剩余 5 箱中饼干重量是面包两倍,则当日食品店购进了( )公斤面包. A.44 B .45 C . 50 D .52 解:6箱食品一共是8+9+16+20+22+27=102公斤,3倍数,卖出一箱面包后,剩余饼干重量是面包两倍,因此剩余也应当是3倍数,因此卖出那箱面包只能也是3倍数9跟27其中一种,代入9,102-9=93,则饼干62,面包31,在剩余数里找不到可以凑成31,因此不符合。代入27,102-27=75,则饼干50,面包25,刚好9+16=25,因此25+27=52。,选D展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2023年行测数学运算真题合集.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3074644.html