毕业设计论文-最小生成树问题报告.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 最小 生成 问题 报告
- 资源描述:
-
《数据结构》 课程设计报告 专 业: 软件工程 题 目: 最小生成树问题 目录 一. 设计目的 2 二. 设计内容 2 三. 概要设计 1 1、功能模块图 1 2、各个模块详细的功能描述 1 四.详细设计 2 1.主函数和其他函数的伪码算法 2 2、主要函数的程序流程图 6 3、函数之间的调用关系图 13 五.测试数据及运行结果 14 1.正常测试数据及运行结果 14 2、非正常测试数据及运行结果 15 六.调试情况,设计技巧及体会 17 七.参考文献 17 八.附录:源代码 17 24 一. 设计目的 课程设计是软件设计的综合训练,包括问题分析、总体结构设计、用户界面设计、程序设计基本技能和技巧。能够在设计中逐步提高程序设计能力,培养科学的软件工作方法。而且通过数据结构课程设计能够在下述各方面得到锻炼: 1、能根据实际问题的具体情况,结合数据结构课程中的基本理论和基本算法,正确分析出数据的逻辑结构,合理地选择相应的存储结构,并能设计出解决问题的有效算法。 2、提高程序设计和调试能力。通过上机实习,验证自己设计的算法的正确性。学会有效利用基本调试方法,迅速找出程序代码中的错误并且修改。 3、培养算法分析能力。分析所设计算法的时间复杂度和空间复杂度,进一步提高程序设计水平。 二. 设计内容 最小生成树问题: 设计要求:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 三. 概要设计 1、功能模块图 开始 创建一个图 功能选择 1.建立邻接矩阵 2.建立邻接表 3. PRIM算法 4. kruscal算法 结束 2、各个模块详细的功能描述 ※创建一个图:通过给用户信息提示,让用户将城市信息及城市之间的联系关系和连接权值写入程序,并根据写入的数据创建成一个图。 ※功能选择:给用户提示信息,让用户选择相应功能。 ※建立邻接矩阵:将用户输入的数据整理成邻接矩阵并显现在屏幕上。 ※建立邻接表:将用户输入的数据整理成临接表并显现在屏幕上。 ※PRIM算法:利用PRIM算法求出图的最小生成树,即:城市之间最经济的连接方案。 四.详细设计 1.主函数和其他函数的伪码算法 ※主函数: void main() { MGraph G; Dgevalue dgevalue; CreateUDG(G,dgevalue); char u; cout<<"图创建成功。"; cout<<"请根据如下菜单选择操作。\n"; cout<<" *****************************************"<<endl; cout<<" **1、用邻接矩阵存储:********************"<<endl; cout<<" **2、用邻接表存储:**********************"<<endl; cout<<" **3、普里姆算法求最经济的连接方案********"<<endl; cout<<" **4、克鲁斯卡尔算法求最经济的连接方案****"<<endl; cout<<" *****************************************"<<endl<<endl; int s; char y='y'; while(y='y') { cout<<"请选择菜单:"<<endl; cin>>s; switch(s) { case 1: cout<<"用邻接矩阵存储为:"<<endl; Adjacency_Matrix(G); break; case 2: cout<<"用邻接表存储为:"<<endl; Adjacency_List(G,dgevalue); break; case 3: cout<<"普里姆算法最经济的连接方案为:"<<endl; cout<<"请输入起始城市名称:"; cin>>u; MiniSpanTree_PRIM(G,u); break; case 4: cout<<"克鲁斯卡尔算法最经济的连接方案为:"<<endl; MiniSpanTree_KRSL(G,dgevalue); break; default: cout<<"您的输入有误!"; break; } cout<<endl<<"是否继续?y/n:"; cin>>y; if(y=='n') break; } } ※邻接矩阵和临接表的创建: int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵 { int i,j,k; cout<<"请输入城市个数及其之间的可连接线路数目:"; cin>>G.vexnum>>G.arcnum; cout<<"请输入各个城市名称(分别用一个字符代替):"; for(i=0;i<G.vexnum;++i) cin>>G.vexs[i]; for(i=0;i<G.vexnum;++i)//初始化数组 for(j=0;j<G.vexnum;++j) { G.arcs[i][j].adj=MAX; } cout<<"请输入两个城市名称及其连接费用(严禁连接重复输入!):"<<endl; for(k=0;k<G.arcnum;++k) { cin >> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value; i = LocateVex(G,dgevalue[k].ch1); j = LocateVex(G,dgevalue[k].ch2); G.arcs[i][j].adj = dgevalue[k].value; G.arcs[j][i].adj = G.arcs[i][j].adj; } return OK; } ※临接矩阵的输出: void Adjacency_Matrix(MGraph G) //用邻接矩阵存储数据 { int i,j; for(i=0; i<G.vexnum; i++) { for(j=0; j<G.vexnum; j++) if(G.arcs[i][j].adj==MAX) cout<<0<<" "; else cout<<G.arcs[i][j].adj<<" "; cout<<endl; } } ※邻接表的输出: void Adjacency_List(MGraph G,Dgevalue dgevalue) //用邻接表储存数据 { int i,j; for(i=0;i<G.vexnum;i++) { cout<<G.vexs[i]<<"->"; for(j=0;j<G.arcnum;j++) if(dgevalue[j].ch1==G.vexs[i]&&dgevalue[j].ch2!=G.vexs[i]) cout<<dgevalue[j].ch2<<"->"; else if(dgevalue[j].ch1!=G.vexs[i]&&dgevalue[j].ch2==G.vexs[i]) cout<<dgevalue[j].ch1<<"->"; cout<<"\b\b "<<endl; } } ※最小生成树PRIM算法: void MiniSpanTree_PRIM(MGraph G,char u)//普里姆算法求最小生成树 { int i,j,k; Closedge closedge; k = LocateVex(G,u); for(j=0; j<G.vexnum; j++) //辅助数组初始化 { if(j != k) { closedge[j].adjvex = u; closedge[j].lowcost = G.arcs[k][j].adj; } } closedge[k].lowcost = 0; for(i=1; i<G.vexnum; i++) { k = Minimum(G,closedge); cout<<" 城市"<<closedge[k].adjvex<<"与城市"<<G.vexs[k]<<"连接。"<<endl; closedge[k].lowcost = 0; for(j=0; j<G.vexnum; ++j) { if(G.arcs[k][j].adj < closedge[j].lowcost) { closedge[j].adjvex = G.vexs[k]; closedge[j].lowcost= G.arcs[k][j].adj; } } } } int Minimum(MGraph G,Closedge closedge) //求closedge中权值最小的边,并返回其顶点在vexs中的位置 { int i,j; double k = 1000; for(i=0; i<G.vexnum; i++) { if(closedge[i].lowcost != 0 && closedge[i].lowcost < k) { k = closedge[i].lowcost; j = i; } } return j; } ※最小生成树kruscal算法: void MiniSpanTree_KRSL(MGraph G,Dgevalue & dgevalue)//克鲁斯卡尔算法求最小生成树 { int p1,p2,i,j; int bj[MAX_VERTEX_NUM]; //标记数组 for(i=0; i<G.vexnum; i++) //标记数组初始化 bj[i]=i; Sortdge(dgevalue,G);//将所有权值按从小到大排序 for(i=0; i<G.arcnum; i++) { p1 = bj[LocateVex(G,dgevalue[i].ch1)]; p2 = bj[LocateVex(G,dgevalue[i].ch2)]; if(p1 != p2) { cout<<" 城市"<<dgevalue[i].ch1<<"与城市"<<dgevalue[i].ch2<<"连接。"<<endl; for(j=0; j<G.vexnum; j++) { if(bj[j] == p2) bj[j] = p1; } } } } void Sortdge(Dgevalue & dgevalue,MGraph G)//对dgevalue中各元素按权值按从小到大排序 { int i,j; double temp; char ch1,ch2; for(i=0; i<G.arcnum; i++) { for(j=i; j<G.arcnum; j++) { if(dgevalue[i].value > dgevalue[j].value) { temp = dgevalue[i].value; dgevalue[i].value = dgevalue[j].value; dgevalue[j].value = temp; ch1 = dgevalue[i].ch1; dgevalue[i].ch1 = dgevalue[j].ch1; dgevalue[j].ch1 = ch1; ch2 = dgevalue[i].ch2; dgevalue[i].ch2 = dgevalue[j].ch2; dgevalue[j].ch2 = ch2; } } } } 2、主要函数的程序流程图 ※main()主函数 ※CreatUDG()建图函数 ※Adjacency_Matrix()邻接矩阵输出函数 ※Adjacency_List()邻接表输出函数 ※MiniSpanTree_PRIM()普里姆算法: 基本思想: 假设WN=(V,{E})是一个含有n个顶点的连通网,TV是WN上最小生成树中顶点的集合,TE是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而TE是E的一个子集。在算法开始执行时,TE为空集,TV中只有一个顶点,因此,按普利姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有n-1条边为止。在此系统中,N是你所需要输入的城市个数。而每条边的权值就是你所输入的每两个城市之间的建设成本。 开始 标志顶点1加入U集合 寻找满足边的一个顶点在U,另一个顶点在V的最小边 形成n-1条边的生成树 顶点k加入U 修改由顶点k到其他顶点边的权值 结束 得到最小生成树 ※MiniSpanTree_KRSL()克鲁斯卡尔算法: 基本思想: 假设WN=(V, {E})是一个含有N个顶点的连通网。则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含n个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有n棵树的一个森林。之后,从网的边集E中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有n-1条边为止。在此系统中,N是你所需要输入的城市个数。而每条边的权值就是你所输入的每两个城市之间的建设成本。 ※LocateVex()节点位置函数: ※Minimum()权值比较函数: ※Sortdge()权值排序函数: 3、函数之间的调用关系图 五.测试数据及运行结果 1.正常测试数据及运行结果 2、非正常测试数据及运行结果 六.调试情况,设计技巧及体会 通过此次课程设计,我更深刻地理解了最小生成树问题,知道如何在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。并且用了多种求解方式。 数据结构是学习计算机的一门重要的基础课,在学习数据结构之前我们学习了C语言在我们看来数据结构就是学习C语言的延续。这几天的课程设计让 我充分地体会到了上机实践对于计算机编程的重要性。其实在于计算机语言这类课程看重的就是上机的实际操作,不满足于基本理论的学习。上机操作才能让我们更加好的掌握我们所要学习的计算机语言知识。 只顾学习理论是远远不够的。实践中可以发现许许多多的问题,然后通过同学老师的帮助,得以解决,让自己的编程能力得到极大的提升。此外,也让我更加明白编程是要解决现实问题的。只有拥有把现实问题理论化的能力,才是编程真正需要达到的境界。 七.参考文献 《《新编C语言课程设计教程》》 周二强 编著 清华大学出版社 《《数据结构(C语言版)》》 严蔚敏 吴伟民 编著 清华大学出版社 八.附录:源代码 #include<stdio.h> #include<stdlib.h> #include<iostream.h> #define MAX_VERTEX_NUM 20 #define OK 1 #define ERROR 0 #define MAX 1000 typedef struct Arcell { double adj; }Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct { char vexs[MAX_VERTEX_NUM]; //节点数组 AdjMatrix arcs; //邻接矩阵 int vexnum,arcnum; //图的当前节点数和弧数 }MGraph; typedef struct Pnode //用于普利姆算法 { char adjvex; //节点 double lowcost; //权值 }Pnode,Closedge[MAX_VERTEX_NUM]; //记录顶点集U到V-U的代价最小的边的辅助数组定义 typedef struct Knode //用于克鲁斯卡尔算法中存储一条边及其对应的2个节点 { char ch1; //节点1 char ch2; //节点2 double value;//权值 }Knode,Dgevalue[MAX_VERTEX_NUM]; //------------------------------------------------------------------------------- int CreateUDG(MGraph & G,Dgevalue & dgevalue); int LocateVex(MGraph G,char ch); int Minimum(MGraph G,Closedge closedge); void MiniSpanTree_PRIM(MGraph G,char u); void Sortdge(Dgevalue & dgevalue,MGraph G); void Adjacency_Matrix(MGraph G); void Adjacency_List(MGraph G,Dgevalue dgevalue); //------------------------------------------------------------------------------- int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵 { int i,j,k; cout<<"请输入城市个数及其之间的可连接线路数目:"; cin>>G.vexnum>>G.arcnum; cout<<"请输入各个城市名称(分别用一个字符代替):"; for(i=0;i<G.vexnum;++i) cin>>G.vexs[i]; for(i=0;i<G.vexnum;++i)//初始化数组 for(j=0;j<G.vexnum;++j) { G.arcs[i][j].adj=MAX; } cout<<"请输入两个城市名称及其连接费用(严禁连接重复输入!):"<<endl; for(k=0;k<G.arcnum;++k) { cin >> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value; i = LocateVex(G,dgevalue[k].ch1); j = LocateVex(G,dgevalue[k].ch2); G.arcs[i][j].adj = dgevalue[k].value; G.arcs[j][i].adj = G.arcs[i][j].adj; } return OK; } int LocateVex(MGraph G,char ch) //确定节点ch在图G.vexs中的位置 { int a ; for(int i=0; i<G.vexnum; i++) if(G.vexs[i] == ch) a=i; return a; } void MiniSpanTree_PRIM(MGraph G,char u)//普里姆算法求最小生成树 { int i,j,k; Closedge closedge; k = LocateVex(G,u); for(j=0; j<G.vexnum; j++) //辅助数组初始化 { if(j != k) { closedge[j].adjvex = u; closedge[j].lowcost = G.arcs[k][j].adj; } } closedge[k].lowcost = 0; for(i=1; i<G.vexnum; i++) { k = Minimum(G,closedge); cout<<" 城市"<<closedge[k].adjvex<<"与城市"<<G.vexs[k]<<"连接。"<<endl; closedge[k].lowcost = 0; for(j=0; j<G.vexnum; ++j) { if(G.arcs[k][j].adj < closedge[j].lowcost) { closedge[j].adjvex = G.vexs[k]; closedge[j].lowcost= G.arcs[k][j].adj; } } } } int Minimum(MGraph G,Closedge closedge) //求closedge中权值最小的边,并返回其顶点在vexs中的位置 { int i,j; double k = 1000; for(i=0; i<G.vexnum; i++) { if(closedge[i].lowcost != 0 && closedge[i].lowcost < k) { k = closedge[i].lowcost; j = i; } } return j; } void MiniSpanTree_KRSL(MGraph G,Dgevalue & dgevalue)//克鲁斯卡尔算法求最小生成树 { int p1,p2,i,j; int bj[MAX_VERTEX_NUM]; //标记数组 for(i=0; i<G.vexnum; i++) //标记数组初始化 bj[i]=i; Sortdge(dgevalue,G);//将所有权值按从小到大排序 for(i=0; i<G.arcnum; i++) { p1 = bj[LocateVex(G,dgevalue[i].ch1)]; p2 = bj[LocateVex(G,dgevalue[i].ch2)]; if(p1 != p2) { cout<<" 城市"<<dgevalue[i].ch1<<"与城市"<<dgevalue[i].ch2<<"连接。"<<endl; for(j=0; j<G.vexnum; j++) { if(bj[j] == p2) bj[j] = p1; } } } } void Sortdge(Dgevalue & dgevalue,MGraph G)//对dgevalue中各元素按权值按从小到大排序 { int i,j; double temp; char ch1,ch2; for(i=0; i<G.arcnum; i++) { for(j=i; j<G.arcnum; j++) { if(dgevalue[i].value > dgevalue[j].value) { temp = dgevalue[i].value; dgevalue[i].value = dgevalue[j].value; dgevalue[j].value = temp; ch1 = dgevalue[i].ch1; dgevalue[i].ch1 = dgevalue[j].ch1; dgevalue[j].ch1 = ch1; ch2 = dgevalue[i].ch2; dgevalue[i].ch2 = dgevalue[j].ch2; dgevalue[j].ch2 = ch2; } } } } void Adjacency_Matrix(MGraph G) //用邻接矩阵存储数据 { int i,j; for(i=0; i<G.vexnum; i++) { for(j=0; j<G.vexnum; j++) if(G.arcs[i][j].adj==MAX) cout<<0<<" "; else cout<<G.arcs[i][j].adj<<" "; cout<<endl; } } void Adjacency_List(MGraph G,Dgevalue dgevalue) //用邻接表储存数据 { int i,j; for(i=0;i<G.vexnum;i++) { cout<<G.vexs[i]<<"->"; for(j=0;j<G.arcnum;j++) if(dgevalue[j].ch1==G.vexs[i]&&dgevalue[j].ch2!=G.vexs[i]) cout<<dgevalue[j].ch2<<"->"; else if(dgevalue[j].ch1!=G.vexs[i]&&dgevalue[j].ch2==G.vexs[i]) cout<<dgevalue[j].ch1<<"->"; cout<<"\b\b "<<endl; } } void main() { MGraph G; Dgevalue dgevalue; CreateUDG(G,dgevalue); char u; cout<<"图创建成功。"; cout<<"请根据如下菜单选择操作。\n"; cout<<" *****************************************"<<endl; cout<<" **1、用邻接矩阵存储:********************"<<endl; cout<<" **2、用邻接表存储:**********************"<<endl; cout<<" **3、普里姆算法求最经济的连接方案********"<<endl; cout<<" **4、克鲁斯卡尔算法求最经济的连接方案****"<<endl; cout<<" *****************************************"<<endl<<endl; int s; char y='y'; while(y='y') { cout<<"请选择菜单:"<<endl; cin>>s; switch(s) { case 1: cout<<"用邻接矩阵存储为:"<<endl; Adjacency_Matrix(G); break; case 2: cout<<"用邻接表存储为:"<<endl; Adjacency_List(G,dgevalue); break; case 3: cout<<"普里姆算法最经济的连接方案为:"<<endl; cout<<"请输入起始城市名称:"; cin>>u; MiniSpanTree_PRIM(G,u); break; case 4: cout<<"克鲁斯卡尔算法最经济的连接方案为:"<<endl; MiniSpanTree_KRSL(G,dgevalue); break; default: cout<<"您的输入有误!"; break; } cout<<endl<<"是否继续?y/n:"; cin>>y; if(y=='n') break; } }展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




毕业设计论文-最小生成树问题报告.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2906232.html