求极限的13种方法.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 13 方法
- 资源描述:
-
(完整word版)求极限的13种方法 求极限的13种方法(简叙) 龘龖龍 极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。 一、 利用恒等变形求极限 利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限 ,其中 分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。 解 因为 = = = 当时,而,故= 二、 利用变量代换求极限 利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。常用的变量代换有倒代换、整体代换、三角代换等。 例2、求极限,其中m,n为正整数。 分析 这是含根式的()型未定式,应先将其利用变量代换进行化简,再进一步计算极限。 解 令 原式= 三、 利用对数转换求极限 利用对数转换求极限主要是通过公式进行恒等变形,特别的情形,在()型未定式时可直接运用 例3、求极限 解 原式= 四、 利用夹逼准则求极限 利用夹逼准则求极限主要应用于表达式易于放缩的情形。 例4、求极限 分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使用夹逼准则。 解 因为, 且不等式两端当趋于无穷时都以0为极限,所以=0 五、 利用单调有界准则求极限 利用单调有界准则求极限主要应用于给定初始项与递推公式的数列极限。在确定存在的前提下,可由方程A=f(A)解出A,则=A。 例5、设,(n=1,2,…),求极限。 分析 由于题中并未给出表达式,也无法求出,故考虑利用单调有界准则。 解 由易知0。 根据算术平均数与几何平均数的关系,有 所以,数列有下界,即对一切n1,有 又 所以即数列单调减少。由单调有界准则知数列有极限。 现设=A,则由极限的保号性知A0. 对式子两边同时取极限得 解得 A=,即=(已舍去负根) 六、 利用等价无穷小求极限 利用等价无穷小求极限是求极限极为重要的一种方法,也是最为简便、快捷的方法。学习时不仅要熟记常用的等价无穷小,还应学会灵活应用。同时应注意:只有在无穷小作为因式时,才能用其等价无穷小替换。 例6、求极限 分析 此题中sin(x-1),sinsin(x-1),lnx均为无穷小,而均作为因式,故可以利用等价无穷小快速求出极限。 解 当时, 故原式= 七、 利用导数定义求极限 利用导数定义求极限适用于型极限,并且需要满足存在。 例7、求,其中。 分析 初步可判断此题为()型未定式,先通过公式进行恒等变形,再进一步利用导数定义求得极限。 解 = 而 由导数的定义知,表示函数lnsinx在x=a处的导数。即。 八、 利用洛必达法则求极限 利用洛必达法则求极限适用于型未定式,其它类型未定式也可通过恒等变形转化为型。洛必达法则使用十分方便,但使用时注意检查是否符合洛必达法则的使用条件。 例8、求极限 解 原式= 注:连续两次使用洛必达法则 九、 利用微分中值定理求极限 利用微分中值定理求极限的重点是学会灵活应用拉格朗日中值定理,即。 例9、求极限 分析 若对函数,在区间上使用拉格朗日中值定理 则: 解 由分析可知 又 所以= 十、 利用泰勒公式(麦克劳林公式展开式)求极限 利用泰勒公式(麦克劳林公式展开式)求极限是求极限的又一极为重要的方法。与其它方法相比,泰勒公式略显繁琐,但实用性非常强。 例10、求极限 分析 若使用洛必达法则,计算起来会相当麻烦;同时分子并非两因式之积,等价无穷小也不适用,此时可以考虑用泰勒公式。 解 故 原式= 十一、 利用定积分的定义求极限 由定积分的定义知,如果f(x)在上可积,那么,我们可以对用特殊的分割方法(如n等分),并在每一个子区间特殊地取点(如取每个子区间的左端点或右端点),所得积分和的极限仍是f(x)在上的定积分。所以,如果遇到某些求和式极限的问题,能够将其表示为某个可积函数的积分和,就能用定积分来求极限。这里关键在于根据所给和式确定被积函数和积分区间。 例11、求极限 解 从和式看,若选被积函数为,则因分点 : 原式== 十二、 利用级数收敛的必要条件求极限 级数具有以下性质: 若级数收敛,则。所以对于某些极限可以将函数f(n)作为级数的一般项,只需证明级数收敛,便有=0. 例12、求极限 解 令 故=0 十三、 利用幂级数的和函数求极限 当数列本身就是某个级数的部分和数列时,求该数列的极限就成了求相应级数的和。此时常常可以辅助性地构造一个函数在某点的值。 例13、求极限 分析 若构造幂级数,则所求极限恰好是此级数的和函数在处的值。 解 考虑幂级数, 由于 设s(x)= ,于是 s(x)= 从而 原式=展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




求极限的13种方法.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2775262.html