矩阵理论课程论文-随机矩阵理论在频谱感知上的应用.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 理论 课程 论文 随机 频谱 感知 应用
- 资源描述:
-
成 绩 评卷人 研究生姓名 学 号 吉首大学研究生课程论文 《随机矩阵理论在频谱感知上的应用》 课程类别: 专业选修课 课程名称: 矩阵理论 任课教师: 随机矩阵理论在频谱感知上的应用 摘要:频谱感知是指认知用户通过各种信号检测和处理手段来获取无线网络中的频谱使用信息,即主用户信号是否占用该频段。但主用户不占用时,认知用户可以使用该频段,反之则不能使用该频段。由此可知最重要的是检测主用户时候存在,本论文就利用随机矩阵理论来进行检测。随机矩阵理论(Random Matrix Theory,RMT)通过比较随机的多维时间序列统计特性,可以体现实际数据中对随机的偏离程度,并揭示数据中整体关联的行为特性[1]。 关键字:随机矩阵理论;频谱感知 1引言 频谱感知的目的就是通过一些手段检测主用户是否存在来判断其所占有的频段是否空闲可用,如果可用,则认知用户可以利用此频段进行通信,这样一来可以充分的利用频谱资源[2],其中随机矩阵理论作为一套比较完备的理论体系,在无线通信领域已经被国际上许多学者广泛关注,已然发展成为无线通信领域的一个非常重要的理论工具。 随机矩阵理论一经提出就收到国外学者的关注,2009年10月,在欧洲召开了以随机矩阵理论为主题的国际会议RMTfWC2009(Random Matrix Theory for Wireless Communications),这标志着随机矩阵理论在通信领域已经成为学术界的一个研究热点,与此同时许多国家都在该研究方向设立了专项研究基金[3]。随机矩阵是指一个以随机变量为元素的矩阵,与确定性矩阵相对应。1928年,Wishart等人最早提出了随机矩阵的概念并对其加以研究,主要是研究了随机矩阵元素、特征根在正态分布情形下的联合分布。而对于以随机矩阵为核心的随机矩阵理论,对于它的研究最早起源于上世纪50年代。当时,Wigner首次将随机矩阵理论与核物理练习到一起,并发明了著名的半圆律。随后Marcenko和Pastures发现了著名的M-P律,从此大维随机矩阵引起了数学家和物理学家浓厚的兴趣[4,5]。 2008年,Cardoso等人着重研究了随机矩阵理论中的极限渐近谱理论,并利用此理论成果求出了由多个认知用户接收信息组成的采样协方差矩阵的最大特征值和最小特征值的极限值。再次基础上,将这两个极限值的比值作为频谱感知的判决门限与检验统计量进行比较进而作出判决,由此设计出了一种协作频谱感知算法LSC算法。它的优点是无需知道任何认知用户发射机信号先验信息就能得到比较好的性能,这是当时绝大部分传统的感知方法做不到的[6]。 近几年,国内研究机构也逐渐加强了对频谱感知技术的关注,主要包括电子科技大学、清华大学、香港科技大学及西安交通大学等等。除了大学之外,许多公司、企业也纷纷加入到这个行列当中。例如,华为公司一直非常关注频谱感知的研究进展,并且以实际行动资助一些与之相关的学术研究工作。 2008年,曾永红提出了一种基于随机矩阵理论的最大特征检测算法即MED算法,它的提出主要是解决判决门限因恒定不变而无法适时调整的缺点。他重点研究了有关矩阵最大特征值的分布特性理论,通过推导获得了采样协方差矩阵最大特征值的概率分布函数,并根据次分布函数探索出了判决门限与虚警概率的关系,进而推导出了判决门限随虚警概率变化的数学表达式。通过设置不同的虚警概率取值,MED算法的判决门限根据实际情况动态调整,由此克服了门限恒定不变的缺点。但是MED算法也存在当认知节点数目和采样次数较小时感知性能收到不利影响的缺点[7]。 2011年,南京邮电大学的曹开田和杨震提出了一种新的基于最小特征值的合作感知算法。他们对多个认知用户的采样协方差矩阵的最小特征值进行了研究并获得了最小特征值的概率密度函数。 2 随机矩阵理论 随机矩阵的理论基础是概率论和数理统计,随机过程以及矩阵论。随机矩阵指的是一个以随机变量为基本元素的矩阵,其中如果随机矩阵的行数和列数都趋于无穷大,则称之为大维随机矩阵。目前所有的经典极限理论都假设数据的维数是固定的,但由于其自身的局限性,经典的极限理论不再适用于大维数据的情况。因此,在上世纪30年代Wishart等人提出了随机矩阵的概念,并对其进行了大量的研究[8]。 随机矩阵谱理论主要研究的是在满足一定条件的情况下,随机矩阵的经验谱分布函数所具备的一些优良特性,而这些特性恰好是血多确定性矩阵不具备的。例如,当非方阵的维数K与N都趋于无穷大,但比值K/N为以固定值β时,矩阵谱分布函数收敛到M-P率(Marcheko-Parstur率),其概率密度函数为式(2-1)。 (2-1) 其中,a、b分别是非方阵的最小特征值和最大特征值,渐近收敛值满足式(2-2)。 (2-2) 根据有关随机矩阵的理论,当矩阵元素分布不满足某个条件时,如有信号存在时矩阵元素的分布不是零均值独立同分布,这是矩阵的最大特征值和最小特征值将大于或小于渐进收敛值。利用这一特性,我们可以通过观察矩阵特征值的渐进收敛值是否在在M-P率的收敛范围之内来得出主用户频段是否空闲可用的结论[9]。 另外,随机矩阵谱理论还涉及到许多不同类型的矩阵。对于不同的通信系统,利用随机矩阵理论时所选择的矩阵也不相同,常见的作为研究对象的矩阵主要有以下几种。 1) Wigner矩阵:令一个厄尔米特随机矩阵如式(2-3)。 (2-3) 并且满足:包含对角线的上三角元素相互独立,且期望为0,方差为1,这样则称之为n维的Wigner。 2) 样本协方差矩阵:有一个复随机矩阵如式(2-4)suo`所示。 (2-4) 其中矩阵中的元素相互独立,且期望为0方差为1。 3) 广义样本协方差矩阵:我们将式(2-5)的矩阵叫做广义样本协方差矩阵。 (2-5) 它的样本协方差矩阵相比多了两个开方矩阵,如果是其中其它的特殊形式,那么矩阵就会有其它更多的应用,比如矩阵是矩阵和矩阵。 3基于随机矩阵理论的频谱感知 以简单的通信场景出发,最终要将主用户多发射天线、认知用户多接收天线的认知MIMO(Multiple-Input Multiple-Output)场景作为频谱感知的应用环境,这样在提高系统感知性能的同时也符合未来通信技术发展的需要。另外,选择多天线进行协作感知,这样可以通过增加数据量达到进一步提高感知性能的目的。 将随机矩阵理论应用于频谱感知当中,主要研究以下几个问题: 1) 稀疏重建问题:对于一个处于d维空间里的信号x,稀疏的概念如式(3-1)。 (3-1) 也就是说,对于一维信号,稀疏的含义是非零值的个数是有限的。它的度量有线性度量因子给出,形式如下(3-2)。 (3-2) 想要构建N=d是困难的,我们希望做到的是,因为x是稀疏的,所以它的有效长度n远小于它的维数d。 2) 度量矩阵:通过线性度量重构信号x,这需要一定的约束条件,数学表达式为(3-3)。 (3-3) 其中,是一个的矩阵,实现了长度从d到N的减少。 3) Candes-Tao定理:它是一个稍强的条件下产生的重建算法,并有一个定量条件而非定性条件,即在稀疏向量上需要是几乎等距的,完整的定理描述如下:假设度量是被限制等距的,那么对于所有的稀疏度为3n的稀疏向量x,存在式(3-4)的关系。 (3-4) 这样x的重构问题实际上就转化为一个求解凸优化的问题,用数学表达式如式(3-5)。 ,1范数的最小值 (3-5) 在分析图1-1所示是多个认知用户的协作感知场景,其中共有K个认知用户,各用户同时对主用户信号进行检测,共同感知频段是否空闲可用。 图1-1多个认知用户的协作感知场景 每个认知用户的接收天线都要对主用户信号进行接收,设采样次数为N,这样共有个数据,可将它们组成一个的矩阵如式(3-6)。 (3-6) 得到上面的采样矩阵之后,由于它是非方阵,处理起来不方便,因此我们将它作下面的处理如式(3-7)。 (3-7) 这样可以得到一个K阶方阵A,我们称之为采样协方差矩阵。利用采样协方差矩阵进行研究,既可以保留原来数据的信息,同时还可以利用方阵的一些如特征值等特性进行分析研究。 4总结 本论文主要讨论的内容是随机矩阵理论在频谱感知上的应用,利用随机矩阵理论找到高性能的频谱感知算法,使得在影响主用户正常使用的前提下,尽可能地检测出主用户未占用的空闲频段,已达到节约频谱资源、提高频谱利用率的目的。 5参考文献 [1]徐赞新,王钺,司洪波,冯振明.基于随机矩阵理论的城市人群移动行为分析[J].物理学报,2011,04. [2]Chuanhai JIAO, Keren WANG, Shou MEN. Cooperative blind spectrum sensing using autocorrelation matrix[J]. The Journal of Posts and Telecommunication,2011,183. [3]王小英.大维样本协方差矩阵的线性谱统计量的中心极限定理[D].东北师范大学.2009. [4]Yonghong Zeng, Yingchang Liang. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio[J].IEEE transactions on communications.2009,Vol.57,No.6.P1784-1793. [5]Lei Wang, Baoyu Zheng, Jingwu Cui, Wenjing Yue. Spectrum Sensing Using Non-asymptotic Behavior of Eigenvalues[J]. IEEE, 2011. [6]Huiqin Li, Zhidong Bai. Extreme Eigenvalues of Large Dimensional Quaternion Sample Covariance Matrices[J]. Journal of Statical Planning and Inferece, 2014. [7]Antonia M Tulina Sergio verdu. Random Matrix Theory and Wireless Communications[J]. Foundations and Trends in Communications and Information Theory Vol.1, No 1,2004. [8]Yang Ou, Yiming Wang. Multiple Antennas Spectrum Sensing for Cognitive Radio Networks[J]. Journal of Networks, 2013, 83. [9]Wenjie Zheng, Chai Kiat Yeo. Sequential Sensing Based Spectrum Handoff in Cognitive Radio Networks with Multiple Users[J]. Computer Networks, 2013.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




矩阵理论课程论文-随机矩阵理论在频谱感知上的应用.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2686552.html