分享
分销 收藏 举报 申诉 / 11
播放页_导航下方通栏广告

类型专题六:导数和函数高考大题类型(自己总结).doc

  • 上传人:a199****6536
  • 文档编号:2146357
  • 上传时间:2024-05-20
  • 格式:DOC
  • 页数:11
  • 大小:1.27MB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题 导数 函数 高考 类型 自己 总结
    资源描述:
    导数高考大题(教师版) 类型一:对单调区间的分类讨论 1、已知函数,. (Ⅰ)求函数的单调区间; (Ⅱ)当时,都有成立,求实数的取值范围. 类型二:给出单调递增递减区间等价于恒成立问题 2、已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围. 类型三:零点个数问题 3、已知函数(,为常数),且为的一个极值点.(Ⅰ) 求的值;(Ⅱ) 求函数的单调区间; (Ⅲ) 若函数有3个不同的零点,求实数的取值范围. 类型四:一般的恒成立问题 4.已知f(x)=xlnx-ax,g(x)=-x2-2, (Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围; (Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值; 类型五:用构造法证明不等式问题 5、 已知函数,曲线在点处的切线方程为. (I)求,的值; (II)证明:当,且时,. 6、设函数,其中为自然对数的底数. (Ⅰ)求函数的单调区间; (Ⅱ)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值. 近三年新课标导数高考试题 [2011] 1、(2)下列函数中,既是偶函数又在单调递增的函数是( ) (A) (B) (C) (D) 2、(9)由曲线,直线及轴所围成的图形的面积为( ) (A) (B)4 (C) (D)6 3、(12)函数的图像与函数的图像所有交点的横坐标之和等于( ) (A)2 (B) 4 (C) 6 (D)8 4、(21)(本小题满分12分) 已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值;(Ⅱ)如果当,且时,,求的取值范围。 [2012] 5、(12)设点P在曲线y=ex 上,点Q在曲线y=ln(2x)上,则|pQ|最小值为( ) (A) 1-ln2 (B) (C)1+ln2 (D) 6、(21)(本小题满分12分) 已知函数f(x)满足 (1)求f(x)的解析式及单调区间; (2)若求(a+1)b的最大值。 【2013年】 7、16、若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值是______. 8、(21)(本小题满分共12分) 已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2 (Ⅰ)求a,b,c,d的值 (Ⅱ)若x≥-2时, ,求k的取值范围。 导数高考大题(教师版) 类型一:对单调区间的分类讨论 1、已知函数,. (Ⅰ)求函数的单调区间; (Ⅱ)当时,都有成立,求实数的取值范围. 解:(Ⅰ)的定义域是,. …………………………2分 (1)当时,成立,的单调增区间为; ……3分 (2)当时, 令,得,则的单调增区间是. …………4分 令,得,则的单调减区间是. …………5分 综上所述,当时,的单调增区间为;当时,的单调减区间是,的单调增区间是. ………………………6分 (Ⅱ)当时,成立,. ………………………………7分 当时,成立, 即时,成立. 设, 所以=. 当时,,函数在上为减函数; …………11分 时,,函数在上为增函数. …………12分 则在处取得最小值,. 则. 综上所述,时,成立的的范围是. …………13分 类型二:给出单调递增递减区间等价于恒成立问题 2、已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围. 解:(Ⅰ) …………1分 由已知,解得. …………3分 (II)函数的定义域为. (1)当时, ,的单调递增区间为;……5分 (2)当时. 当变化时,的变化情况如下: - + 极小值 由上表可知,函数的单调递减区间是; 单调递增区间是. …………8分 (II)由得,…………9分 由已知函数为上的单调减函数, 则在上恒成立, 即在上恒成立. 即在上恒成立. …………11分 令,在上, 所以在为减函数. , 所以. 类型三:零点个数问题 3、已知函数(,为常数),且为的一个极值点.(Ⅰ) 求的值;(Ⅱ) 求函数的单调区间; (Ⅲ) 若函数有3个不同的零点,求实数的取值范围. 解: (Ⅰ) 函数f (x)的定义域为(0,+∞)……1分 ∵ f ′ (x) = ……2分 ∴,则a = 1.………4分 (Ⅱ)由(Ⅰ) 知 ∴ f ′ (x) = ………6分 由f ′ (x) > 0可得x >2或x <1,由f ′ (x) < 0可得1< x <2. ∴ 函数f ( x ) 的单调递增区间为 (0 ,1) 和 (2,+ ∞ ), 单调递减区间为 (1 , 2 ). ………9分 (Ⅲ) 由(Ⅱ)可知函数f (x)在(0,1)单调递增,在(1,2)单调递减,在(2,+∞)单调递增. 且当x =1或x =2时,f ′ (x) = 0. ………10分 ∴ f (x) 的极大值为 ………11分 f (x)的极小值为 ……12分 由题意可知 则 ………14分 类型四:一般的恒成立问题 4.已知f(x)=xlnx-ax,g(x)=-x2-2, (Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值; 1.解:(Ⅰ)对一切恒成立,即恒成立. 也就是在恒成立.………1分 令 , 则,……2分 在上,在上, 因此,在处取极小值,也是最小值, 即,所以.……4分 (Ⅱ)当, ,由得. ………6分 ①当时,在上,在上 因此,在处取得极小值,也是最小值. . 由于 因此, ………8分 ②当,,因此上单调递增, … 类型五:用构造法证明不等式问题 5、 已知函数,曲线在点处的切线方程为. (I)求,的值; (II)证明:当,且时,. 解:(Ⅰ) 由于直线的斜率为,且过点,故即 解得,。 (Ⅱ)由(Ⅰ)知,所以 考虑函数,则 所以当时,故 当 当时, 从而当 类型六:最值问题 6、设函数,其中为自然对数的底数. (Ⅰ)求函数的单调区间; (Ⅱ)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值. 解:(Ⅰ)由已知, 所以, ……………2分 由,得, ……………3分 所以,在区间上,, 函数在区间上单调递减; ……………4分 在区间上,, 函数在区间上单调递增; ……………5分 即函数的单调递减区间为,单调递增区间为. (Ⅱ)因为, 所以曲线在点处切线为:. ……………7分 切线与轴的交点为,与轴的交点为, ……………9分 因为,所以, ……………10分 , ……………12分 在区间上,函数单调递增,在区间上,函数单调递减. 所以,当时,有最大值,此时,所以,的最大值为. 近三年新课标导数高考试题 [2011] 1、(2)下列函数中,既是偶函数又在单调递增的函数是B (A) (B) (C) (D) 2、(9)由曲线,直线及轴所围成的图形的面积为C (A) (B)4 (C) (D)6 3、(12)函数的图像与函数的图像所有交点的横坐标之和等于D (A)2 (B) 4 (C) 6 (D)8 4、(21)(本小题满分12分) 已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值;(Ⅱ)如果当,且时,,求的取值范围。 (21)解:(Ⅰ) 由于直线的斜率为,且过点,故即 解得,。 (Ⅱ)由(Ⅰ)知,所以。 考虑函数,则。 (i)设,由知,当时,。而,故 当时,,可得; 当x(1,+)时,h(x)<0,可得 h(x)>0 从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+. (ii)设0<k<1.由于当x(1,)时,(k-1)(x2 +1)+2x>0,故 (x)>0, 而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。 (iii)设k1.此时(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得 h(x)<0,与题设矛盾。 综合得,k的取值范围为(-,0] [2012] 5、(12)设点P在曲线y=ex 上,点Q在曲线y=ln(2x)上,则|pQ|最小值为B (A) 1-ln2 (B) (C)1+ln2 (D) 6、(21)(本小题满分12分) 已知函数f(x)满足 (1)求f(x)的解析式及单调区间; (2)若求(a+1)b的最大值。 【解析】(1) 令得: 得: 在上单调递增 得:的解析式为 且单调递增区间为,单调递减区间为 (2)得 ①当时,在上单调递增 时,与矛盾 ②当时, 得:当时, 令;则 当时, 当时,的最大值为 【2013年】 7、16、若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值是______. 【命题意图】本题主要考查函数的对称性及利用导数求函数最值,是难题. 【解析】由图像关于直线=-2对称,则 0==, 0==,解得=8,=15, ∴=, ∴== = 当∈(-∞,)∪(-2, )时,>0, 当∈(,-2)∪(,+∞)时,<0, ∴在(-∞,)单调递增,在(,-2)单调递减,在(-2,)单调递增,在(,+∞)单调递减,故当=和=时取极大值,==16. 8、(21)(本小题满分共12分) 已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2 (Ⅰ)求a,b,c,d的值 (Ⅱ)若x≥-2时, ,求k的取值范围。 【命题意图】本题主要考查利用导数的几何意义求曲线的切线、函数单调性与导数的关系、函数最值,考查运算求解能力及应用意识,是中档题. 【解析】(Ⅰ)由已知得, 而=,=,∴=4,=2,=2,=2;……4分 (Ⅱ)由(Ⅰ)知,,, 设函数==(), ==, 有题设可得≥0,即, 令=0得,=,=-2, (1)若,则-2<≤0,∴当时,<0,当时, >0,即在单调递减,在单调递增,故在=取最小值, 而==≥0, ∴当≥-2时,≥0,即≤恒成立, (2)若,则=, ∴当≥-2时,≥0,∴在(-2,+∞)单调递增,而=0, ∴当≥-2时,≥0,即≤恒成立, (3)若,则==<0, ∴当≥-2时,≤不可能恒成立, 综上所述,的取值范围为[1,]. 11 / 11
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:专题六:导数和函数高考大题类型(自己总结).doc
    链接地址:https://www.zixin.com.cn/doc/2146357.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork