2016年高考数学理试题分类汇编------导数及其应用.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 年高 学理 试题 分类 汇编 导数 及其 应用
- 资源描述:
-
______________________________________________________________________________________________________________ 2016年高考数学理试题分类汇编 导数及其应用 一、选择题 1、(2016年四川高考)设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是 (A)(0,1) (B)(0,2) (C)(0,+∞) (D)(1,+∞) 【答案】A 2、(2016年全国I高考)函数y=2x2–e|x|在[–2,2]的图像大致为 【答案】D 二、填空题 1、(2016年全国II高考)若直线是曲线的切线,也是曲线的切线,则 . 【答案】 2、(2016年全国III高考)已知为偶函数,当时,,则曲线在点处的切线方程 是_______________。 【答案】 三、解答题 1、(2016年北京高考) 设函数,曲线在点处的切线方程为, (1)求,的值; (2)求的单调区间. 【解析】 (I) ∴ ∵曲线在点处的切线方程为 ∴, 即① ② 由①②解得:, (II)由(I)可知:, 令, ∴ 极小值 ∴的最小值是 ∴的最小值为 即对恒成立 ∴在上单调递增,无减区间. 2、(2016年山东高考)已知. (I)讨论的单调性; (II)当时,证明对于任意的成立. 【解析】(Ⅰ) 求导数 当时,,,单调递增, ,,单调递减; 当时, (1) 当时,, 或,,单调递增, ,,单调递减; (2) 当时,, ,,单调递增, (3) 当时,, 或,,单调递增, ,,单调递减; (Ⅱ) 当时,, 于是, , 令 ,,, 于是, ,的最小值为; 又 设,,因为,, 所以必有,使得,且 时,,单调递增; 时,,单调递减; 又,,所以的最小值为. 所以. 即对于任意的成立. 3、(2016年四川高考)设函数f(x)=ax2-a-lnx,其中a ∈R. (I)讨论f(x)的单调性; (II)确定a的所有可能取值,使得f(x) >-e1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。 【解析】(I)由题意, ①当时,,,在上单调递减. ②当时,,当时,; 当时,. 故在上单调递减,在上单调递增. (II)原不等式等价于在上恒成立. 一方面,令, 只需在上恒大于0即可. 又∵,故在处必大于等于0. 令,,可得. 另一方面, 当时, ∵故,又,故在时恒大于0. ∴当时,在单调递增. ∴,故也在单调递增. ∴,即在上恒大于0. 综上,. 4、(2016年天津高考)设函数,,其中 (I)求的单调区间; (II) 若存在极值点,且,其中,求证:; (Ⅲ)设,函数,求证:在区间上的最大值不小于. 【解析】(1) ① ,单调递增; ②,在单调递增,在单调递减,在单调递增 (2)由得 ∴ (3)欲证在区间上的最大值不小于,只需证在区间上存在, 使得即可 ①当时,在上单调递减 递减,成立 当时, ∵ ∴ 若时,,成立 当时,, 所以,在区间上的最大值不小于成立 5、(2016年全国I高考)已知函数有两个零点. (I)求a的取值范围; (II)设x1,x2是的两个零点,证明:+x2<2. 解:⑴ 由已知得: ① 若,那么,只有唯一的零点,不合题意; ② 若,那么, 所以当时,,单调递增 当时,,单调递减 即: ↓ 极小值 ↑ 故在上至多一个零点,在上至多一个零点 由于,,则, 根据零点存在性定理,在上有且仅有一个零点. 而当时,,, 故 则的两根,, ,因为,故当或时, 因此,当且时, 又,根据零点存在性定理,在有且只有一个零点. 此时,在上有且只有两个零点,满足题意. ③ 若,则, 当时,,, 即,单调递增; 当时,,,即,单调递减; 当时,,,即,单调递增. 即: + 0 - 0 + ↑ 极大值 ↓ 极小值 ↑ 而极大值 故当时,在处取到最大值,那么恒成立,即无解 而当时,单调递增,至多一个零点 此时在上至多一个零点,不合题意. ④ 若,那么 当时,,,即, 单调递增 当时,,,即, 单调递增 又在处有意义,故在上单调递增,此时至多一个零点,不合题意. ⑤ 若,则 当时,,,即, 单调递增 当时,,,即, 单调递减 当时,,,即, 单调递增 即: + 0 - 0 + ↑ 极大值 ↓ 极小值 ↑ 故当时,在处取到最大值,那么恒成立,即无解 当时,单调递增,至多一个零点 此时在上至多一个零点,不合题意. 综上所述,当且仅当时符合题意,即的取值范围为. ⑵ 由已知得:,不难发现,, 故可整理得: 设,则 那么,当时,,单调递减;当时,,单调递增. 设,构造代数式: 设, 则,故单调递增,有. 因此,对于任意的,. 由可知、不可能在的同一个单调区间上,不妨设,则必有 令,则有 而,,在上单调递增,因此: 整理得:. 6、(2016年全国II高考) (Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域. 【解析】⑴证明: ∵当时, ∴在上单调递增 ∴时, ∴ ⑵ 由(1)知,当时,的值域为,只有一解. 使得, 当时,单调减;当时,单调增 记,在时,,∴单调递增 ∴. 7、(2016年全国III高考)设函数,其中,记的最大值为. (Ⅰ)求; (Ⅱ)求; (Ⅲ)证明. 解析:(Ⅰ). (Ⅱ)当时, 因此,. ………4分 当时,将变形为. 令,则是在上的最大值,,,且当时,取得极小值,极小值为. 令,解得(舍去),. 8、(2016年浙江高考)已知,函数F(x)=min{2|x−1|,x2−2ax+4a−2}, 其中min{p,q}= (I)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围; (II)(i)求F(x)的最小值m(a); (ii)求F(x)在区间[0,6]上的最大值M(a). (II)(i)设函数,,则 ,, 所以,由的定义知,即 . (ii)当时, , 当时, . 所以, . 9、(2016江苏)已知函数. (1) 设a=2,b=. ① 求方程=2的根; ②若对任意,不等式恒成立,求实数m的最大值; (2)若,函数有且只有1个零点,求ab的值. 解:(1)因为,所以. ①方程,即,亦即, 所以,于是,解得. ②由条件知. 因为对于恒成立,且, 所以对于恒成立. 而,且, 所以,故实数的最大值为4. (2)因为函数只有1个零点,而, 所以0是函数的唯一零点. 因为,又由知, 所以有唯一解. 令,则, 从而对任意,,所以是上的单调增函数, 于是当,;当时,. 因而函数在上是单调减函数,在上是单调增函数. 下证. 若,则,于是, 又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾. 若,同理可得,在和之间存在的非0的零点,矛盾. 因此,. 于是,故,所以. Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2016年高考数学理试题分类汇编------导数及其应用.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2106325.html