线代知识点总结-数学一.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 总结 数学
- 资源描述:
-
线性代数知识点、难点 1、阶行列式的定义 对于阶行列式的定义,重点应把握两点:一是每一项的构成,二是每一项的符号。每一项的构成是不同行不同列的个元素构成,一个阶行列式共有项。乘积项为的符号取决于的逆序数,即当为偶排列时取正号,当为奇排列时取负。 例1 行列式 为二阶行列式,每一项由2个元素构成,第一项为,符号为正,第二项为1*2,符号为负。 2、余子式和代数余子式 余子式和代数余子式的概念容易出错,在计算中应注意。代数余子式,其中为余子式。一般这类题,重点考察对代数余子式的理解和其基本性质的应用,所以考生一定要灵活掌握,掌握基本思想。下面请看一例: 例2 设行列式 则第4行元素余子式之和的值为__________ 【分析】 部分考生答案为0。原因是将余子式和代数余子式混淆了。本题中第四行元素的代数余子式之和为0。因为 。 3、行列式按一行(列)展开 设,则 或 注意:公式中使用的是代数余子式,而不是余子式。 4、行列式的计算 行列式的基本计算方法有三个: 例21 归化 利用行列式的性质将行列式化成较简单且易于计算的行列式(如三角行列式等); 例22 降阶 利用行列式的展开定理,将高阶行列式化成低阶行列式进行计算。 在实际计算过程中,往往两种方法交替使用:先利用性质将某行(列)化出 尽可能多的零元素,再用按行(列)展开定理进行降阶。注意,在化零元素的过程中,尽量不要出现分式,否则,计算过程往往会变得相当繁琐。 例23 递推 在降阶中找出高阶行列式与低阶行列式(,通常是)的关系,即递推公式,利用递推公式递推求得。 例3 记行列式为,则方程的根的个数为_。 解析 问方程有几个根,也就是问是的几次多项式。不要错误 地认为这样的一定是4次多项式 ,其实适当选系数可构造出0至4任一次数的多项式。 由于行列式的每一个位置都含有,若立即展开处理是不妥的,应当先利用 性质恒等变形消去一些再展开。将第1列的-1倍依次加至其余各列,有 易见是二次多项式。 例4 _。 解析 方法1 方法2 解本例的方法有典型性,大家应熟练掌握。 5、矩阵的概念 矩阵的行数和列数不一定相等。行数和列数相等的矩阵称为方阵。 :矩阵和矩阵必须具有相同的行数和相同的列数,且对应元素均相等。如。 只有两个矩阵具有相同的行数和列数时,才能进行矩阵的加法运算。 矩阵的数乘表示对矩阵中的每一个元素都乘以。注意:是每一个元素,而不是某一行或某一列。 矩阵的乘法必须要求的列数等于的行数。 矩阵的乘法一般不满足交换律,即。例如:,,。对于某些矩阵,即使与都有意义,它们仍不一定相等。如,,与都有意义,但为矩阵,而为矩阵,显然不相等。 当和均为矩阵时,。行列式是数,可以交换。 有矩阵乘积,不能推出或。等价地说,且,有可能使,如上例。 矩阵的乘法不满足消去律,即时,有,但。只有当为非奇异矩阵,即时,若,则必有。若,则必有。 例5 设4阶矩阵,,其中是4维列向量,且,,则_。 解析 本题考查矩阵运算与行列式的性质。 由于,所以 部分考生将矩阵运算与行列式的性质混淆,得出错误结论。 例6 设是3阶方阵,是的伴随矩阵,的行列式,求行列式的值。 解析 本题同样考查矩阵运算与行列式的性质。 由于,故,故 不少考生把错误地写成,把错误地写成 。 6、关于 是考研中常见的一种题型,也是考生比较畏惧的一种题型。它的特点是题干简单,已知较少,所以考生有时候觉得无从下手,其实所有的题都是由基本东西转换而来的,考生要掌握其基本思路。下面举两例说明: 例7 设是阶非0矩阵,满足,且,证明行列式。 【证法一】(反证法)若,那么可逆。用左乘的两端,得与矛盾,故。 【证法二】(用秩)据已知有,那么 因为,即,那么秩从而秩,故。 【证法三】(用有非零解)据已知有,即的列向量是齐次方程组的解,又因,所以有非零解,从而。 注解 是考研题中一个常见的已知条件,对于应当有两种思路: 设是矩阵,是矩阵,若,则 (1)的列向量是齐次方程组的解 (2) 例8 设为阶矩阵,满足,,证明。 【证明】因为 所以 又因于是 故必有 7、伴随矩阵 伴随矩阵是线代中比较重要的概念,也是一个常考的点,出题点多结合逆矩阵,所以考生在深刻掌握伴随矩阵概念的同时,应该熟记一些和伴随有关的公式定理,这类型题一般解法较多比较灵活,考生应熟记它的定义和基本性质,以不变应万变。涉及伴随矩阵的计算或证明问题一般可从公式及伴随矩阵的相关结论着手分析。 以下结论可以直接使用: 例9 设为阶非零矩阵,是的伴随矩阵,当时,证明。 证明 由,及,有。 若,则,设的行向量为,则,即,于是,与已知矛盾,故。 例10 设矩阵满足,其中是的伴随矩阵,若为三个相等的正数,则=_。 解析 题设与的伴随矩阵有关。 由,及,有,且 或, 而,于是,且。 8、逆矩阵 涉及两个矩阵是否可交换,考虑用逆矩阵的定义进行分析。 例11 设阶方阵满足关系式,其中是阶单位阵,则下列哪些正确? 1、 2、 3、 4、 5、 解析 把题目和矩阵的逆矩阵联系起来。若,则说明,,故,。 逆矩阵的计算一般有三种方法: (1); (2)通过恒等变形,利用定义进行计算; (3)用初等变换求逆矩阵。 在用初等变换法求逆矩阵的整个过程中,如果置于之右,则必须只用行初等变换,而不能用列初等变换。如果置于之下,则必须只用列初等变换,而不能用行初等变换。这点务必注意。 例12 设矩阵满足,其中为单位矩阵,则_。 解析 本题考查用定义求逆矩阵。题中给出了矩阵方程,需经过恒等变形,得出或的形式,确定的逆矩阵。 由于,所以 , 于是, 故。 题中没有具体给出矩阵的元素,所以不能用初等变换或求伴随矩阵的方法求逆矩阵,只能用定义。从上面的解题过程可以看出,类似于多项式的因式分解。我们配出了因式,不少考生正是忽视逆矩阵的定义而不知如何下手。 例13 设,均为3阶矩阵,为3阶单位矩阵,已知,,则_。 解析 本题考查求逆矩阵。先做恒等变形,设法分解出,再进行数值计算。由于,所以 , , 故。 本题给出了具体的矩阵,若先求矩阵与之后,再求,计算量就比较大,费时也容易出错。 例14 设,为4阶单位矩阵,且,则_。 解析 对于没有运算法则,通常用单位矩阵恒等变形的技巧化为乘积的形式。 本题是考生失误较多的一个考题,这里涉及的思路方法应很好体会。 9、初等变换 初等变换是一个非常重要的概念,它可以简化许多问题,但是考生在应用初等变换上还不是很熟练,有时候根本就不知道初等变换是用来干什么的。首先建议学员一定要弄清楚概念,它具有什么性质。知道行变换就是左乘初等矩阵,列变换就是右乘初等矩阵,然后就可以化简计算。 初等矩阵均可逆,且其逆是同类型的初等矩阵。例如: 即 例15 设,则 答案: 【分析】利用初等矩阵。矩阵的一、二两行互换后再二、三两行互换,然后一、二两列互换后再二、三两列互换,即是矩阵,即 可见 。 10、线性相关性 线性相关性是考察的重点,同时也是考生的难点。多以选择题或证明题的形式出现。 向量组的线性相关(无关)是一个抽象概念,在理解时需仔细体会“有一组”与“任一组”。“有一组”只要求存在,而“任一组”要求全部,强调任意性。许多错误往往发生在此。 对于向量组恒有,向量组是否线性相关,其实就是问除上述情况之外,能否再找到另一组使得成立。 维向量线性相关 存在不全为0的数使得成立; 齐次方程组有非零解; 向量组的秩; 向量组中某个向量可以用其余向量线性表出 。 例16 设是阶矩阵,是维列向量,若,,证明向量组,, ,线性无关 【证】(用定义、同乘)设 (1) 由于知,, 用左乘(1)式两端,并把,,,代入,有 因为,故=0。 把代入(1)式,同理可知 从而。 类似可得,,,所以,,线性无关。 分析 部分考生在设出之后,不知如何往下做,没有想到可用左乘等式的两端,使问题得到解决。 例17 设4维列向量线性无关,且与4维列向量均正交,证明线性相关。 【证】(用秩)构造矩阵 则矩阵是秩为3的矩阵,由于 所以均是齐次方程组的解。 那么, 从而线性相关。 11、线性表出 线性表出也是常考的一类题型,考察的形式多结合线性相关,线性无关。应结合他们的定义与线性表出的概念,以及他们之间的联系来解题。这类题多用反证法,考生应熟练掌握这部分的题型,否则可能拿到手后根本没有思路,当遇到这种情况时,建议从最基本的定义和概念出发,一步步往结论处求证。有些题可以利用线性相关、无关、向量组的秩、极大线性无关组等概念之间的关系直观的得出结论。 例18 设是维向量组,则( )不正确。 (A) 如果,则任何维向量都可以用线性表示; (B) 如果任何维向量都可以用线性表示,则; (C) 如果,则任何维向量都可以用唯一线性表示; (D) 如果,则存在维向量不能用线性表示。 【分析】利用“用秩判断线性表示”的有关性质。 当时,任何维向量添加进时,秩不会增大,从而(A)正确。 如果(B)的条件成立,则任何维向量组都可以用线性表示,从而如果取是一个阶可逆矩阵的列向量组,则得到,从而(B)正确。 (D)是(B)的逆否命题,也正确。 当时,不能保证任何维向量可用线性表示(如时),因此(C)不正确。 例19 设维列向量组线性无关,则维列向量组线性无关的充要条件为 A 向量组可由向量组线性表出 B向量组可由向量组线性表出 C向量组与向量组等价 D 矩阵与矩阵等价 解析 简记向量组为,向量组记为,那么 线性无关, A 若可由线性表出,则。又线性无关,有 , 从而,即线性无关,充分性成立。 那么,当时,条件必要吗?设,,,,则与均线性无关,但不能由线性表出,故A仅为充分条件,不是必要条件。 B若可由线性表出,则,即有,的线性无关性不能确定,故B不充分。而由A的反例可知B也不是必要条件。 C 由A,B知C只是充分条件。 D 如果矩阵与矩阵等价,则,因为线性无关,故,故,故向量组线性无关,充分性成立。 反之,若向量组与均线性无关,故,从而,即矩阵等价,必要性成立,故选D。 由于两个等价的概念不清,本题错误率很高。 如果两个向量组向量个数相同且等价,则可推知两个矩阵等价。即 与等价与等价 但是与()等价时,矩阵与不等价。 矩阵与等价是指经初等变换矩阵可转换为矩阵,与等价的充要条件是。 12、向量组的秩与极大线性无关组 向量组的极大线性无关组往往是不唯一的,其成员可以不一样,但这些极大线性无关组是等价的,极大线性无关组中向量的个数是一样的,由原向量组唯一确定,由此引出向量组秩的概念,向量组的秩为就是指向量组的极大线性无关组有个向量。 例20 如果向量组与都是向量组的极大线性无关组,证明。 证明 因为是的极大线性无关组,所以 线性相关,于是可由线性表出。 从而向量组可由向量组线性表出。又因向量组是极大线性无关组,是线性无关的,所以。 同理,故。 13、过渡矩阵 过渡矩阵是考试所要求的考点之一,但不是每年都出题的。考生在复习时容易忽略这个考点。 【定义】设和都是V的基,并设在中的坐标为称矩阵 为到的过渡矩阵。此时,如果V中的向量在中的坐标为,在中的坐标为,则有坐标变换公式 两个规范正交基之间的过渡矩阵是正交矩阵。 14、矩阵方程 对于矩阵方程,经恒等变形之后有三种可能的形式: , 如果矩阵是可逆的,则依次有 , 然后经计算就可求出。 因为矩阵乘法没有交换律,所以在恒等变形时,运算法则一定要正确。 例21 已知,其中,,则_。 解析 由,得。因为可逆,有, 在本题中,不要把错误地变形为,而得到 这是一个特别要防止的错误。 例22 设矩阵,矩阵满足,其中是的伴随矩阵,求。 解析 若先计算方程中的及,然后再解,则计算过程会十分复杂。为了避免求及,可利用,在等式两边同时左乘矩阵进行化简。 , ,即 从而有 , , , 故 。 15、基础解系 基础解系的概念及求法是齐次线性方程组的核心问题,是线性代数中一个非常重要的概念,对于这块内容的考察也是一个重点,但是我们在答疑或者是改卷过程中发现还是有很多同学概念混淆。 【定义】设是的解向量,如果(1)线性无关;(2)的任一个解向量可由线性表示,则称是的一个基础解系。 例23 齐次方程组的基础解系是_。 A B C D 解析 严格根据定义,判断基础解系要从是不是解,是否线性无关及解向量的个数三个方面来思考。 16、如何确定自由变量并赋值?(求解基础解系) 很多考生在这块也容易犯错误,因为不同的赋值方法可能得到不同的结果,所以考生只要概念理解清楚,按照步骤就一定能得到正确答案,下面介绍确定自由变量并赋值的基本步骤: (1) 对系数矩阵作初等行变换化其为阶梯形 (2) 由秩确定自由变量的个数 (3) 找出一个秩为的矩阵,则其余的列对应的就是自由变量 (4) 每次给一个自由变量赋值为1,其余的自由变量赋值为0(注意共需赋值次)。 对阶梯形方程组由下往上依次求解,就可以得到方程组的解。 注意:对系数矩阵进行变形时,只能进行初等行变换。 该方法是求解含参数线性方程组的最一般方法,不论方程的个数与未知数的 个数是否相同都可使用,应熟练掌握。 例24 齐次方程组的基础解系是_。 解析 系数矩阵进行初等行变换化为阶梯型,由,知。 令,得, 令,得, 故基础解系是 。 齐次线性方程组的基础解系可以不唯一。 17、特征向量与线性方程组的解 矩阵的特征向量与解线性方程组似乎没有直接联系,其实两者还是有关联的。这就是 是的属于特征值0的特征向量是的非零解 这是由特征向量的定义直接推过来的,大家容易忽略,但在考研题中会经常用到,学员应熟练使用。 例25 设矩阵有特征向量,,求线性方程组的通解,其中。 解析 由题设均是的特征向量,故有 (1),(2),(3) 由(1)解得,即有。由(2)解得,即有。由(3)解得,即有。 注意到方程组为,其中,由可推出,所以是的一个特解。由,知是的两个解。由知,是的两个线性无关的解。由知,,故的基础解系由个线性无关的解向量组成。现是的两个线性无关的解向量,故是的一个基础解系。从而的通解为,其中为任意常数。 18、关于公共解 公共解也是一个考点,公共解的求解一般有固定的方法,考生针对题型掌握 其中的一两种就可以了。下面以例题的形式介绍公共解的几种处理方法: 例26 设有两个4元齐次线性方程组 (Ⅰ) (Ⅱ) (5) 求线性方程组(Ⅰ)的基础解系; (6) 试问方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由。 关于公共解,有以下几种处理方法: (1) 把(Ⅰ)和(Ⅱ)联立起来直接求解; (2) 通过(Ⅰ)和(Ⅱ)各自的通解,寻求公共解; (3) 把(Ⅰ)的通解代入(Ⅱ)中,如仍是解,则把(Ⅰ)的通解代入(Ⅱ)中寻求公共解。 如:(Ⅰ)的基础解系为 ,,那么它的通解就是要是(Ⅱ)的解,就因该满足(Ⅱ)的方程,故 解出, 所以其公共解是 例27 是阶矩阵,证明齐次线性方程组 (Ⅰ)和 (Ⅱ)同解。 【证】如果是(Ⅱ)的解,则,显然即是(Ⅰ)的解,故(Ⅱ)的解全是(Ⅰ)的解。 若是(Ⅰ)的解,即,那么 即 即 故 所以必是(Ⅱ)的解,即(Ⅰ)的解全是(Ⅱ)的解,从而方程组(Ⅰ)与(Ⅱ)同解。 19、求相似标准型的方法(对可对角化的矩阵) 阶矩阵可对角化的充要条件是阶矩阵有个线性无关的特征向量。相似对角化是一个重要的考察点,这部分牵涉的计算量比较大,所以考生一定要细心。基本步骤如下: (1) 求的特征值设是重根; (2) 对每个特征值,求的基础解系,设为 (3) 令则 其中有个。 注意:对应的线性无关的特征向量的个数小于的重数,则不可对角化。若每个的重数与线性无关的特征向量的个数相同,则可对角化。 例28 判断矩阵是否与对角矩阵相似? 解 由特征方程 , 得特征值(二重根), 对于,解方程 , 因为,故属于的线性无关的特征向量的个数等于对应的齐次线性方程的基础解系所含向量的个数即1,不等于根的重数2,故不可对角化,即不与对角形矩阵相似。 20、矩阵的相似、合同、等价分析 (1)等价:矩阵经有限次初等变换变成矩阵,则称与等价; 矩阵等价的充要条件:是同型矩阵且有相同的秩 存在可逆矩阵和 ,使 【注意】矩阵的等价与向量组的等价是两个不同的概念,若矩阵 与 等价,则,,于是,而向量组的等价是指这两个向量组可以互相线性表出。当矩阵与等价时虽有这两个向量组的秩相等,但作为向量组不一定能互相表出,因而不一定等价。例如:,与,的秩相等,但不等价。 但是矩阵 等价。反之,若向量组与向量组等价,则向量组秩,从而,故必有矩阵 (2)相似:设是阶矩阵,如果存在可逆矩阵P,使,则称与相似,记为: 相似矩阵的性质:如 从而有相同的特征值 (有相同的迹) 【注意】这些都是必要条件,可排除哪些矩阵不相似,亦可用来确定相似矩阵的一些参数。若其中有一个不成立,说明与不相似。 例29 已知若,则由迹相等知:,得由行列式相等知:得。 并且,由于是对角矩阵,2与-1就是的特征值,则根据特征值相等知,2与-1也是的特征值。 (3)合同:两个阶实对称矩阵和,如存在可逆矩阵,使得,则称矩阵和合同。 两个实对称矩阵合同的充要条件:二次型与有相同的正、负惯性指数; 两个实对称矩阵合同的充分条件:实对称矩阵合同的充分条件是。 (4) 正交相似:两个阶实对称矩阵,如存在一个正交阵,使得,则称与正交相似。 对正交阵来说,,因此这时。 例30 设则有和合同。0 【证明】因为有可逆矩阵, 使,或者,由二次型与有相同的正惯性指数及相同的负惯性指数,所以合同(注意:和不相似,因为相似的必要条件是特征值相同,显然不满足)。 21、正交变换化二次型为标准型的方法 正交变化化二次型为标准型是历年常考的一个知识点,考生在这块主要的错误就是有时候忘记单位化,再有这块内容的计算量比较大,所以一有疏忽就容易出错误,下面将介绍具体解题步骤,考生应按照步骤进行,仔细计算。 (1) 写出二次型矩阵 (2) 求矩阵的特征值 (3) 求矩阵的特征向量 (4) 改造特征向量(单位化、Schmidt正交化) (5) 构造正交矩阵 则经坐标变换,得 【注意】特征值的顺序与正交矩阵P中对应的特征向量的顺序是一致的。 22、正定二次型(正定矩阵) 正定二次型是常考点,考生主要掌握定义,因为定义在这块中是最好的证明方法,也是最常用的证明方法,如果不能很好的掌握定义,有可能遇到这类型的题目无从下手。 若对任意的维实向量,恒有,则是正定矩阵。 注意:正定矩阵必须是对称矩阵,因此在论证之前应注意是否为对称矩阵。若不是对称矩阵,根本谈不上正定性。 正定矩阵的性质和判别: 实对称矩阵是正定矩阵 合同于E 存在可逆矩阵C,使得(从而) A的正惯性指数 A的特征值全大于0 存在正交矩阵,使得 的各阶顺序主子式全大于0 判别实对称矩阵(实二次型)是否正定的常用方法有三种: ① 用定义 ② 顺序主子式法 ③ 特征值法 例31 是否为正定矩阵。 解析 ,,,顺序主子式全大于0,故正定。 例32 为实矩阵,为阶单位矩阵,已知矩阵,试证:当时,矩阵为正定矩阵。 【证明】(定义法) ⅰ、因为,所以是阶实对称矩阵。 ⅱ、构造二次型,有 因为, 所以,当时,,恒有 即二次型正定,故是正定矩阵. (用特征值)的对称性略,设是矩阵的任一特征值,是相应的特征向量,即用左乘上式的两端得, 由必有,故 因为的特征值是,可见当时必有,即的特征值全大于0,所以是正定矩阵。 23展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




线代知识点总结-数学一.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2099809.html