虞纯.2-三角形全等的判定-(共22张PPT)[1].ppt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 判定 22 PPT
- 资源描述:
-
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,知识回顾,A,B,C,F,1,、什么叫全等三角形?,能,够完全重,合的两个三角形叫 全等三角形。,2,、已知,A,B,C,D,E,F,,找出其中相等的边与角,A,B,=,D,E,C,A,=,F,D,B,C,=,E,F,A,=,D,B,=,E,C,=,F,D,E,F,D,E,F,A,B,C,D,E,F,AB=,DE,CA=,FD,BC=,EF,A=,D,B=,E,C=,F,1.,满足这六个条件可以保证,ABC DEF,吗?,2.,如果只满足这些条件中的一部分,那么能保证,ABC DEF,吗,?,思考:,1.,只给一条,边相等时,;,3,3,1.,只给一个,条件相等,45,2.,只给一个,角相等时,;,45,结论,:,只有一条边或一个角对应相等,的两个三角形不一定全等,.,探究一,两边;,两角。,一边一角;,2.,如果满足,两个,条件,你能说出有哪几种可能的情况?,如果三角形的两边分别为,4cm,,,6cm,时,6cm,6cm,4cm,4cm,结论,:,两条边对应相等的,两个三角形不一定全等,.,三角形的一条边为,4cm,一个内角为,30,时,:,4cm,4cm,30,30,结论,:,一条边一个角对应相等的,两个三角形不一定全等,.,45,30,45,30,如果三角形的两个内角分别是,30,,,45,时,结论,:,两个角对应相等的,两个三角形不一定全等,.,根据三角形的内角和为,180,度,则第三角一定确定,所以当三内角对应相等时,两个三角形不一定全等,两个条件,两角;,两边;,一边一角,。,结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等。,一个条件,一角;,一边;,你能得到什么结论吗?,三角,;,三边;,两边一角;,两角一边。,3.,如果满足,三个,条件,你能说出有哪几种可能的情况?,探索三角形全等的条件,已知两个三角形的三个内角分别为,30,,,60,,,90,它们一定全等吗?,这说明有三个角对应相等的两个三角形,不一定全等,三个角,已知两个三角形的三条边都分别为,3cm,、,4cm,、,6cm,。它们一定全等吗?,3cm,4cm,6cm,4cm,6cm,3cm,6cm,4cm,3cm,三条边,先任意画出一个,ABC,,再画出一个,A,B,C,使,A,B,=AB,B,C,=BC,A,C,=AC.,把画好,A,B,C,的剪下,放到,ABC,上,他们全等吗?,画法,:,1.,画线段,B,C,=BC;,2.,分别以,B,,,C,为圆心,BA,BC,为半径画弧,两弧交于点,A,;,3.,连接线段,A,B,,,A,C,.,探究二,上述结论反映了什么规律?,三边对应相等的两个三角形全等。,简写为“边边边”或“,SSS”,边边边公理:,注:,这个定理说明,只要三角形的三边的长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具有,稳定性,的原理。,如何用符号语言来表达呢,?,在,ABC,与,DEF,中,A,B,C,D,E,F,AB=DE,AC=DF,BC=EF,ABCDEF,(,SSS,),判断两个三角形全等的推理过程,叫做证明三角形全等。,A,C,B,D,证明:,D,是,BC,的中点,BD=CD,在,ABD,与,ACD,中,AB=AC,(已知),BD=CD,(已证),AD=AD,(公共边),ABDACD,(,SSS,),例,1,如图,ABC,是一个钢架,,AB=AC,AD,是连接,A,与,BC,中点,D,的支架,求证:,ABDACD,求证:,B=C,,,B=C,,,练习,:,已知:如图,,AB=AD,,,BC=DC,,,求证,:,ABC ADC,A,B,C,D,AC,AC (),AB=AD (),BC=DC (),ABC ADC,(,SSS,),证明:在,ABC,和,ADC,中,=,已知,已知,公共边,BC,CB,DCB,BF=CD,A,B,C,D,1,、填空题:,解:,ABC,DCB,理由如下:,AB=CD,AC=BD,=,ABC ,(),(,SSS,(,1,)如图,,AB=CD,,,AC=BD,,,ABC,和,DCB,是否全等?试说明理由。,(,2,)如图,,D,、,F,是线段,BC,上的两点,,AB=CE,,,AF=DE,,要使,ABFECD,,,还需要条件,A,E,B D F C,=,=,=,=,或,BD=FC,图,1,已知:如图,1,,,AC=FE,,,AD=FB,BC=DE,求证:,ABCFDE,证明:,AD=FB,AB=FD,(等式性质),在,ABC,和,FDE,中,AC=FE,(已知),BC=DE,(已,知,),AB=FD,(已证),ABCFDE,(,SSS,),求证:,C=E,,,A,c,E,D,B,F,=,=,?,?,。,。,(,2,),ABCFDE,(已证),C=E,(全等三角形的对应角相等),求证:,ABEF,;,DEBC,已知,:,如图,,AB=AC,DB=DC,请说明,B=C,成立的理由,A,B,C,D,在,ABD,和,ACD,中,,AB=AC,(,已知),DB=DC,(已知),AD=AD,(公共边),ABDACD (SSS),解:连接,AD,B=C (,全等三角形的对应角相等),已知,:,如图,四边形,ABCD,中,,AD=CB,AB=CD,求证:,A,C,。,A,C,D,B,分析:要证两角或两线段相等,常先证这两角或两线段,所在的两三角形全等,从而需构造全等三角形。,构造公共边是常添的辅助线,1,2,3,4,已知:,AC=AD,BC=BD,求证:,AB,是,DAC,的平分线,.,AC=AD(),BC=BD(),AB=AB(),ABCABD(),1=2,AB,是,DAC,的平分线,A,B,C,D,1,2,(全等三角形的对应角相等),已知,已知,公共边,SSS,(角平分线定义),证明,:,在,ABC,和,ABD,中,1.,边边边公理:有三边对应相等的两个三角形全等 简写成,“,边边边,”,(,SSS,),2.,边边边公理发现过程中用到的数学方法(包括画图、猜想、分析、归纳等,.),3.,边边边公理在应用中用到的数学方法,:,证明线段,(,或角,),相等,转 化,证明线段,(,或角,),所在的两个三角形全等,.,两个三角形全等的注意点:,1.,说明两三角形全等所需的条件应按对应边的顺序书写,.,2.,结论中所出现的边必须在所证明的两个三角形中,.,小结,:,3.,有时需添辅助线,(,如,:,造公共边,),展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




虞纯.2-三角形全等的判定-(共22张PPT)[1].ppt



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/13199263.html