分享
分销 收藏 举报 申诉 / 34
播放页_导航下方通栏广告

类型2025年备战中考数学专题平行四边形综合检测试卷含答案解析.doc

  • 上传人:知****运
  • 文档编号:13014180
  • 上传时间:2026-01-05
  • 格式:DOC
  • 页数:34
  • 大小:2.25MB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2025 备战 中考 数学 专题 平行四边形 综合 检测 试卷 答案 解析
    资源描述:
    -备战中考数学专题《平行四边形》综合检测试卷含答案解析 一、平行四边形 1.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同步从点D出发,点P沿D→A以1cm/s速度向终点A运动.点Q沿D→B→D以2cm/s速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形面积为S(cm2),点P运动时间为t(s)(0<t<3). (1)当点N落在边BC上时,求t值. (2)当点N到点A、B距离相等时,求t值. (3)当点Q沿D→B运动时,求S与t之间函数体现式. (4)设四边形PQMN边MN、MQ与边BC交点分别是E、F,直接写出四边形PEMF与四边形PQMN面积比为2:3时t值. 【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或 【解析】 试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重叠,此时DQ=3; (2)当点N到点A、B距离相等时,点N在边AB中线上,此时PD=DQ; (3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN. (4)MN、MQ与边BC有交点时,此时<t<,列出四边形PEMF与四边形PQMN面积体现式后,即可求出t值. 试题解析:(1)∵△PQN与△ABC都是等边三角形, ∴当点N落在边BC上时,点Q与点B重叠. ∴DQ=3 ∴2t=3. ∴t=; (2)∵当点N到点A、B距离相等时,点N在边AB中线上, ∴PD=DQ, 当0<t<时, 此时,PD=t,DQ=2t ∴t=2t ∴t=0(不合题意,舍去), 当≤t<3时, 此时,PD=t,DQ=6﹣2t ∴t=6﹣2t, 解得t=2; 综上所述,当点N到点A、B距离相等时,t=2; (3)由题意知:此时,PD=t,DQ=2t 当点M在BC边上时, ∴MN=BQ ∵PQ=MN=3t,BQ=3﹣2t ∴3t=3﹣2t ∴解得t= 如图①,当0≤t≤时, S△PNQ=PQ2=t2; ∴S=S菱形PQMN=2S△PNQ=t2, 如图②,当≤t≤时, 设MN、MQ与边BC交点分别是E、F, ∵MN=PQ=3t,NE=BQ=3﹣2t, ∴ME=MN﹣NE=PQ﹣BQ=5t﹣3, ∵△EMF是等边三角形, ∴S△EMF=ME2=(5t﹣3)2 . ; (4)MN、MQ与边BC交点分别是E、F, 此时<t<, t=1或. 考点:几何变换综合题 2.如图,在正方形ABCD中,E是边BC上一动点(不与点B、C重叠),连接DE、点C有关直线DE对称点为C′,连接AC′并延长交直线DE于点P,F是AC′中点,连接DF. (1)求∠FDP度数; (2)连接BP,请用等式表达AP、BP、DP三条线段之间数量关系,并证明; (3)连接AC,若正方形边长为,请直接写出△ACC′面积最大值. 【答案】(1)45°;(2)BP+DP=AP,证明详见解析;(3)﹣1. 【解析】 【分析】 (1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°; (2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论; (3)先作高线C'G,确定△ACC′面积中底边AC为定值2,根据高大小确定面积大小,当C'在BD上时,C'G最大,其△ACC′面积最大,并求此时面积. 【详解】 (1)由对称得:CD=C'D,∠CDE=∠C'DE, 在正方形ABCD中,AD=CD,∠ADC=90°, ∴AD=C'D, ∵F是AC'中点, ∴DF⊥AC',∠ADF=∠C'DF, ∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°; (2)结论:BP+DP=AP, 理由是:如图,作AP'⊥AP交PD延长线于P', ∴∠PAP'=90°, 在正方形ABCD中,DA=BA,∠BAD=90°, ∴∠DAP'=∠BAP, 由(1)可知:∠FDP=45° ∵∠DFP=90° ∴∠APD=45°, ∴∠P'=45°, ∴AP=AP', 在△BAP和△DAP'中, ∵, ∴△BAP≌△DAP'(SAS), ∴BP=DP', ∴DP+BP=PP'=AP; (3)如图,过C'作C'G⊥AC于G,则S△AC'C=AC•C'G, Rt△ABC中,AB=BC=, ∴AC=,即AC为定值, 当C'G最大值,△AC'C面积最大, 连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重叠, ∵CD=C'D=,OD=AC=1, ∴C'G=﹣1, ∴S△AC'C=. 【点睛】 本题考察四边形综合题、正方形性质、等腰直角三角形判定和性质、全等三角形判定和性质等知识,解题关键是学会添加常用辅助线,构造全等三角形处理问题. 3.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°. (1)求证:四边形ABCD是矩形. (2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF度数. 【答案】(1)见解析;(2)18°. 【解析】 【分析】 (1)根据平行四边形判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形判定得出即可; (2)求出∠FDC度数,根据三角形内角和定理求出∠DCO,根据矩形性质得出OD=OC,求出∠CDO,即可求出答案. 【详解】 (1)证明:∵AO=CO,BO=DO ∴四边形ABCD是平行四边形, ∴∠ABC=∠ADC, ∵∠ABC+∠ADC=180°, ∴∠ABC=∠ADC=90°, ∴四边形ABCD是矩形; (2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2, ∴∠FDC=36°, ∵DF⊥AC, ∴∠DCO=90°﹣36°=54°, ∵四边形ABCD是矩形, ∴OC=OD, ∴∠ODC=54° ∴∠BDF=∠ODC﹣∠FDC=18°. 【点睛】 本题考察了平行四边形性质和判定,矩形性质和判定应用,能灵活运用定理进行推理是解此题关键,注意:矩形对角线相等,有一种角是直角平行四边形是矩形. 4.已知矩形纸片OBCD边OB在x轴上,OD在y轴上,点C在第一象限,且.现将纸片折叠,折痕为EF(点E,F是折痕与矩形边交点),点P为点D对应点,再将纸片还原。 (I)若点P落在矩形OBCD边OB上, ①如图①,当点E与点O重叠时,求点F坐标; ②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若,求点F坐标: (Ⅱ)若点P落在矩形OBCD内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P坐标(直接写出成果即可)。 【答案】(I)①点F坐标为;②点F坐标为;(II) 【解析】 【分析】 (I)①根据折叠性质可得,再由矩形性质,即可求出F坐标; ②由折叠性质及矩形特点,易得,得到,再加上平行,可以得到四边形DEPF是平行四边形,在由对角线垂直,得出 是菱形,设菱形边长为x,在中,由勾股定理建立方程即可求解; (Ⅱ)当O,P,F点共线时OP长度最短. 【详解】 解:(I)①∵折痕为EF,点P为点D对应点 ∵四边形OBCD是矩形, 点F坐标为 ②∵折痕为EF,点P为点D对应点. ∵四边形OBCD是矩形, , ; ∴四边形DEPF是平行四边形. , 是菱形. 设菱形边长为x,则 , , 在中,由勾股定理得 解得 ∴点F坐标为 (Ⅱ) 【点睛】 此题考察了几何折叠问题、等腰三角形性质、平行四边形判定和性质、勾股定理等知识,关键是根据折叠性质进行解答,属于中考压轴题. 5.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P作PE⊥PC交直线AB于E. (1) 求证:PC=PE; (2) 延长AP交直线CD于点F. ①如图2,若点F是CD中点,求△APE面积; ②若ΔAPE面积是,则DF长为 (3) 如图3,点E在边AB上,连接EC交BD于点M,作点E有关BD对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=,则△MNQ面积是 【答案】(1)略;(2)①8,②4或9;(3) 【解析】 【分析】 (1)运用正方形每个角都是90°,对角线平分对角性质,三角形外角等于和它不相邻两个内角和,等角对等边等性质容易得证; (2)作出△ADP和△DFP高,由面积法容易求出这个高值.从而得到△PAE底和高,并求出面积.第2小问思绪同样,通过面积法列出方程求解即可; (3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积二分之一可得其面积. 【详解】 (1) 证明:∵点P在对角线BD上, ∴△ADP≌△CDP, ∴AP=CP, ∠DAP =∠DCP, ∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°, ∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC, ∵∠PAE=90°-∠DAP=90°-∠DCP, ∠DCP=∠BPC-∠PDC=∠BPC-45°, ∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC, ∴∠PEA=∠PAE, ∴PC=PE; (2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M. ∵四边形ABCD是正方形,P在对角线上, ∴四边形HPGD是正方形, ∴PH=PG,PM⊥AB, 设PH=PG=a, ∵F是CD中点,AD=6,则FD=3,=9, ∵==, ∴,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4, ∵=, ②设HP=b,由①可得AE=2b,MP=6-b, ∴=, 解得b=2.4, ∵==, ∴, ∴当b=2.4时,DF=4;当b=3.6时,DF=9, 即DF长为4或9; (3)如图, ∵E、Q有关BP对称,PN∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4, 易证△PEM≌△PQM, △PNQ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ是直角三角形, 设EM=a,NC=b列方程组 , 可得ab=, ∴, 【点睛】 本题是四边形综合题目,考察了正方形性质、等腰直角三角形判定与性质、全等三角形判定与性质等知识;本题综合性强,有一定难度,纯熟掌握正方形性质,证明三角形全等是处理问题关键.要注意运用数形结合思想. 6.如图①,在矩形中,点从边中点出发,沿着速运动,速度为每秒2个单位长度,抵达点后停止运动,点是上点,,设面积为,点运动时间为秒,与函数关系如图②所示. (1)图①中= ,= ,图②中= . (2)当=1秒时,试判断以为直径圆与否与边相切?请阐明理由: (3)点在运动过程中,将矩形沿所在直线折叠,则为何值时,折叠后顶点对应点落在矩形一边上. 【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=、5、. 【解析】 【分析】 (1)由题意得出AB=2BE,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=△AEQ面积=AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,设以PQ为直径圆圆心为O',作O'N⊥BC于N,延长NO'交AD于M,则MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位线定理得出O'M=AP=3,求出O'N=MN-O'M=5<圆O'半径,即可得出结论; (3)分三种状况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,则QF=AB=8,BF=AQ=10,由折叠性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可; ②当点P在BC边上,A'落在BC边上时,由折叠性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可; ③当点P在BC边上,A'落在CD边上时,由折叠性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可. 【详解】 (1)∵点P从AB边中点E出发,速度为每秒2个单位长度, ∴AB=2BE, 由图象得:t=2时,BE=2×2=4, ∴AB=2BE=8,AE=BE=4, t=11时,2t=22, ∴BC=22-4=18, 当t=0时,点P在E处,m=△AEQ面积=AQ×AE=×10×4=20; 故答案为8,18,20; (2)当t=1秒时,以PQ为直径圆不与BC边相切,理由如下: 当t=1时,PE=2, ∴AP=AE+PE=4+2=6, ∵四边形ABCD是矩形, ∴∠A=90°, ∴PQ=, 设以PQ为直径圆圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示: 则MN=AB=8,O'M∥AB,MN=AB=8, ∵O'为PQ中点, ∴O''M是△APQ中位线, ∴O'M=AP=3, ∴O'N=MN-O'M=5<, ∴以PQ为直径圆不与BC边相切; (3)分三种状况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示: 则QF=AB=8,BF=AQ=10, ∵四边形ABCD是矩形, ∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18, 由折叠性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°, ∴A'F==6, ∴A'B=BF-A'F=4, 在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t, 由勾股定理得:42+(4-2t)2=(4+2t)2, 解得:t=; ②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示: 由折叠性质得:A'P=AP, ∴∠APQ'=∠A'PQ, ∵AD∥BC, ∴∠AQP=∠A'PQ, ∴∠APQ=∠AQP, ∴AP=AQ=A'P=10, 在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t-4, ∴2t-4=6,解得:t=5; ③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示: 由折叠性质得:A'P=AP,A'Q=AQ=10, 在Rt△DQA'中,DQ=AD-AQ=8, 由勾股定理得:DA'==6, ∴A'C=CD-DA'=2, 在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t, 由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2, ∴82+(2t-4)2=22+(22-2t)2, 解得:t=; 综上所述,t为或5或时,折叠后顶点A对应点A′落在矩形一边上. 【点睛】 四边形综合题目,考察了矩形性质、折叠变换性质、勾股定理、函数图象、直线与圆位置关系、三角形中位线定理、等腰三角形判定、以及分类讨论等知识. 7.定义:我们把三角形被一边中线提成两个三角形叫做“友好三角形”. 性质:假如两个三角形是“友好三角形”,那么这两个三角形面积相等. 理解:如图①,在△ABC中,CD是AB边上中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD. 应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O. (1)求证:△AOB和△AOE是“友好三角形”; (2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF面积. 探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重叠部分面积等于△ABC面积,请直接写出△ABC面积. 【答案】(1)见解析;(2)12;探究:2或2. 【解析】 试题分析:(1)运用一组对边平行且相等四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形性质证得OE=OB,即可证得△AOE和△AOB是友好三角形; (2)△AOE和△DOE是“友好三角形”,即可得到E是AD中点,则可以求得△ABE、△ABF面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解. 探究:画出符合条件两种状况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC面积.即可求出△ABC面积. 试题解析:(1)∵四边形ABCD是矩形, ∴AD∥BC, ∵AE=BF, ∴四边形ABFE是平行四边形, ∴OE=OB, ∴△AOE和△AOB是友好三角形. (2)∵△AOE和△DOE是友好三角形, ∴S△AOE=S△DOE,AE=ED=AD=3, ∵△AOB与△AOE是友好三角形, ∴S△AOB=S△AOE, ∵△AOE≌△FOB, ∴S△AOE=S△FOB, ∴S△AOD=S△ABF, ∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12. 探究: 解:分为两种状况:①如图1, ∵S△ACD=S△BCD. ∴AD=BD=AB, ∵沿CD折叠A和A′重叠, ∴AD=A′D=AB=×4=2, ∵△A′CD与△ABC重叠部分面积等于△ABC面积, ∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC, ∴DO=OB,A′O=CO, ∴四边形A′DCB是平行四边形, ∴BC=A′D=2, 过B作BM⊥AC于M, ∵AB=4,∠BAC=30°, ∴BM=AB=2=BC, 即C和M重叠, ∴∠ACB=90°, 由勾股定理得:AC=, ∴△ABC面积是×BC×AC=×2×2=2; ②如图2, ∵S△ACD=S△BCD. ∴AD=BD=AB, ∵沿CD折叠A和A′重叠, ∴AD=A′D=AB=×4=2, ∵△A′CD与△ABC重叠部分面积等于△ABC面积, ∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC, ∴DO=OA′,BO=CO, ∴四边形A′BDC是平行四边形, ∴A′C=BD=2, 过C作CQ⊥A′D于Q, ∵A′C=2,∠DA′C=∠BAC=30°, ∴CQ=A′C=1, ∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2; 即△ABC面积是2或2. 考点:四边形综合题. 8.(1)问题发现 如图1,点E. F分别在正方形ABCD边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试阐明理由; (2)类比引申 如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF; (3)联想拓展 如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足等量关系,并写出推理过程。 【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】 试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重叠,证出△AFG≌△AFE,根据全等三角形性质得出EF=FG,即可得出答案; (2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重叠,证出△AFE≌△AFG,根据全等三角形性质得出EF=FG,即可得出答案; (3)把△ACE旋转到ABF位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断. 试题解析:(1)理由是:如图1, ∵AB=AD, ∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重叠,如图1, ∵∠ADC=∠B=90∘, ∴∠FDG=180∘,点F. D. G共线, 则∠DAG=∠BAE,AE=AG, ∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90∘−45∘=45∘=∠EAF, 即∠EAF=∠FAG, 在△EAF和△GAF中, AF=AF,∠EAF=∠GAF,AE=AG, ∴△AFG≌△AFE(SAS), ∴EF=FG=BE+DF; (2)∠B+∠D=180∘时,EF=BE+DF; ∵AB=AD, ∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重叠,如图2, ∴∠BAE=∠DAG, ∵∠BAD=90∘,∠EAF=45∘, ∴∠BAE+∠DAF=45∘, ∴∠EAF=∠FAG, ∵∠ADC+∠B=180∘, ∴∠FDG=180∘,点F. D. G共线, 在△AFE和△AFG中, AE=AG,∠FAE=∠FAG,AF=AF, ∴△AFE≌△AFG(SAS), ∴EF=FG, 即:EF=BE+DF, 故答案为:∠B+∠ADC=180∘; (3)BD2+CE2=DE2. 理由是:把△ACE旋转到ABF位置,连接DF, 则∠FAB=∠CAE. ∵∠BAC=90∘,∠DAE=45∘, ∴∠BAD+∠CAE=45∘, 又∵∠FAB=∠CAE, ∴∠FAD=∠DAE=45∘, 则在△ADF和△ADE中, AD=AD,∠FAD=∠DAE,AF=AE, ∴△ADF≌△ADE, ∴DF=DE,∠C=∠ABF=45∘, ∴∠BDF=90∘, ∴△BDF是直角三角形, ∴BD2+BF2=DF2, ∴BD2+CE2=DE2. 9.(1)问题发现: 如图①,在等边三角形ABC中,点M为BC边上异于B、C一点,以AM为边作等边三角形AMN,连接CN,NC与AB位置关系为   ; (2)深入探究: 如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN数量关系,并阐明理由; (3)拓展延伸: 如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C一点,以AM为边作正方形AMEF,点N为正方形AMEF中点,连接CN,若BC=10,CN=,试求EF长. 【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3); 【解析】 分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN. (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形性质得到,运用等腰三角形性质得到∠BAC=∠MAN,根据相似三角形性质即可得到结论; (3)如图3,连接AB,AN,根据正方形性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC∥AB,理由如下: ∵△ABC与△MN是等边三角形, ∴AB=AC,AM=AN,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, 在△ABM与△ACN中, , ∴△ABM≌△ACN(SAS), ∴∠B=∠ACN=60°, ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°, ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°, ∴CN∥AB; (2)∠ABC=∠ACN,理由如下: ∵=1且∠ABC=∠AMN, ∴△ABC~△AMN ∴, ∵AB=BC, ∴∠BAC=(180°﹣∠ABC), ∵AM=MN ∴∠MAN=(180°﹣∠AMN), ∵∠ABC=∠AMN, ∴∠BAC=∠MAN, ∴∠BAM=∠CAN, ∴△ABM~△ACN, ∴∠ABC=∠ACN; (3)如图3,连接AB,AN, ∵四边形ADBC,AMEF为正方形, ∴∠ABC=∠BAC=45°,∠MAN=45°, ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN, ∵, ∴, ∴△ABM~△ACN ∴, ∴=cos45°=, ∴, ∴BM=2, ∴CM=BC﹣BM=8, 在Rt△AMC, AM=, ∴EF=AM=2. 点睛:本题是四边形综合题目,考察了正方形性质、等边三角形性质、等腰三角形性质、全等三角形性质定理和判定定理、相似三角形性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是处理问题关键. 10.如图,AB为⊙O直径,点E在⊙O上,过点E切线与AB延长线交于点D,连接BE,过点O作BE平行线,交⊙O于点F,交切线于点C,连接AC (1)求证:AC是⊙O切线; (2)连接EF,当∠D=  °时,四边形FOBE是菱形. 【答案】(1)见解析;(2)30. 【解析】 【分析】 (1)由等角转换证明出,根据圆位置关系证得AC是⊙O切线. (2)根据四边形FOBE是菱形,得到OF=OB=BF=EF,得证为等边三角形,而得出,根据三角形内角和即可求出答案. 【详解】 (1)证明:∵CD与⊙O相切于点E, ∴, ∴, 又∵, ∴,∠OBE=∠COA ∵OE=OB, ∴, ∴, 又∵OC=OC,OA=OE, ∴, ∴, 又∵AB为⊙O直径, ∴AC为⊙O切线; (2)解:∵四边形FOBE是菱形, ∴OF=OB=BF=EF, ∴OE=OB=BE, ∴为等边三角形, ∴, 而, ∴. 故答案为30. 【点睛】 本题重要考察与圆有关位置关系和圆中计算问题,纯熟掌握圆性质是本题解题关键. 11.正方形ABCD边长为1,对角线AC与BD相交于点O,点E是AB边上一种动点(点E不与点A、B重叠),CE与BD相交于点F,设线段BE长度为x. (1)如图1,当AD=2OF时,求出x值; (2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE面积为S,试求S与x函数关系式并求出S最大值. 【答案】(1)x=﹣1; (2)S=﹣(x﹣)2+(0<x<1), 当x=时,S值最大,最大值为,. 【解析】 试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到成果; (2)过P作PG⊥AB交AB延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形性质得到EB=PG=x,由三角形面积公式得到S=(1﹣x)•x,根据二次函数性质即可得到结论. 试题解析:(1)过O作OM∥AB交CE于点M,如图1, ∵OA=OC, ∴CM=ME, ∴AE=2OM=2OF, ∴OM=OF, ∴, ∴BF=BE=x, ∴OF=OM=, ∵AB=1, ∴OB=, ∴, ∴x=﹣1; (2)过P作PG⊥AB交AB延长线于G,如图2, ∵∠CEP=∠EBC=90°, ∴∠ECB=∠PEG, ∵PE=EC,∠EGP=∠CBE=90°, 在△EPG与△CEB中, , ∴△EPG≌△CEB, ∴EB=PG=x, ∴AE=1﹣x, ∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1), ∵﹣<0, ∴当x=时,S值最大,最大值为,. 考点:四边形综合题 12.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF. (1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC; (2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中两个结论与否成立?若成立,直接写出结论即可;若不成立,请你直接写出你猜想成果; (3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间数量关系. 【答案】(1)见解析; (2)EF⊥BC仍然成立; (3)EF=BC 【解析】 试题分析:(1)由平行四边形性质得到BH=HC=BC,OH=HF,再由等边三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (2)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰直角三角形性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可; (3)由平行四边形性质得到BH=HC=BC,OH=HF,再由等腰三角形性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可. 试题解析:(1)连接AH,如图1, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等边三角形, ∴AB=BC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2, ∴AH==BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (2)EF⊥BC仍然成立,EF=BC,如图2, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=BC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF⊥BC,EF=BC; (3)如图3, ∵四边形OBFC是平行四边形, ∴BH=HC=BC,OH=HF, ∵△ABC是等腰三角形, ∴AB=kBC,AH⊥BC, 在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2, ∴AH=BH=BC, ∵OA=AE,OH=HF, ∴AH是△OEF中位线, ∴AH=EF,AH∥EF, ∴EF⊥BC,BC=EF, ∴EF=BC. 考点:四边形综合题. 13.已知一次函数y=x+3图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示. (1)填空:AB= ,BC= . (2)将△ABC绕点B逆时针旋转, ①当AC与x轴平行时,则点A坐标是 ②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线函数关系式. ③在②条件下,旋转过程中AC扫过图形面积是多少? (3)将△ABC向右平移到△A′B′C′位置,点C′为直线AB上一点,请直接写出△ABC扫过图形面积. 【答案】(1):5;5;(2)①(0,﹣2);②直线BD解析式为y=﹣x+3;③S=π;(3)△ABC扫过面积为. 【解析】 试题分析:(1)根据坐标轴上点坐标特征,结合一次函数解析式求出A、B两点坐标,运用勾股定理即可解答; (2)①由于B(0,3),因此OB=3,因此AB=5,因此AO=AB-BO=5-3=2,因此A(0,-2); ②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C坐标,求出直线AC解析式,根据AC∥BD,因此直线BD解析式k值与直线AC解析式k值相似,设出解析式,即可解答. ③运用旋转性质进而得出A,B,C对应点位置进而得出答案,再运用以BC为半径90°圆心角扇形面积减去以AB为半径90°圆心角扇形面积求出答案; (3)运用平移性质进而得出△ABC扫过图形是平行四边形面积. 试题解析:(1)∵一次函数y=x+3图象与x轴、y轴分别交于A、B两点, ∴A(-4,0),B(0,3), ∴AO=4,BO=3, 在Rt△AOB中,AB=, ∵等腰直角三角形ABC,∠BAC=90°, ∴BC=; (2)①如图1, ∵B(0,3), ∴OB=3, ∵AB=5, ∴AO=AB-BO=5-3=2, ∴A(0,-2). 当在x轴上方时,点A坐标为(0,8), ②如图2, 过点C作CF⊥OA与点F, ∵△ABC为等腰直角三角形, ∴∠BAC=90°,AB=AC, ∴∠BAO+∠CAF=90°, ∵∠OBA+∠BAO=90°, ∴∠CAF=∠OBA, 在△AOB和△CFA中, , ∴△AOB≌△CFA(AAS); ∴OA=CF=4,OB=AF=3, ∴OF=7,CF=4, ∴C(-7,4) ∵A(-4,0) 设直线AC解析式为y=kx+b, 将A与C坐标代入得:, 解得:, 则直线AC解析式为y=x, ∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE, ∴∠ABD=90°, ∵∠CAB=90°, ∴∠ABD=∠CAB=90°, ∴AC∥BD, ∴设直线BD解析式为y=x+b1, 把B(0,3)代入解析式:b1=3, ∴直线BD解析式为y=x+3; ③由于旋转过程中AC扫过图形是以BC为半径90°圆心角扇形面积减去以AB为半径90°圆心角扇形面积, 因此可得:S=; (3)将△ABC向右平移到△A′B′C′位置,△ABC扫过图形是一种平行四边形和三角形ABC,如图3: 将C点纵坐标代入一次函数y=x+3,求得C′横坐标为, 平行四边CAA′C′面积为(7+)×4=, 三角形ABC面积为×5×5= △ABC扫过面积为:. 考点:几何变换综合题. 14.(本题14分)小明在学习平行线有关知识时总结了如下结论:端点分别在两条平行线上所有线段中,垂直于平行线线段最短. 小明应用这个结论进行了下列探索活动和问题处理. 问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上一动点,以PB,PA为边构造 □APBQ,求对角线PQ最小值及PQ最
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2025年备战中考数学专题平行四边形综合检测试卷含答案解析.doc
    链接地址:https://www.zixin.com.cn/doc/13014180.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork