关于抽象函数问题的解法.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关于 抽象 函数 问题 解法
- 资源描述:
-
抽象函数问题有关解法 一、求表达式: 1.换元法:即用中间变量表示原自变量的代数式,从而求出,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。 例1:已知 ,求. 解:设,则∴∴ 2.凑配法:在已知的条件下,把并凑成以表示的代数式,再利用代换即可求.此解法简洁,还能进一步复习代换法。 例2:已知,求 解:∵又∵ ∴,(||≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知二次实函数,且+2+4,求. 解:设=,则 =比较系数得∴ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知=为奇函数,当 >0时,,求 解:∵为奇函数,∴的定义域关于原点对称,故先求<0时的表达式。∵->0,∴, ∵为奇函数,∴∴当<0时∴ 例5.一已知为偶函数,为奇函数,且有+, 求,. 解:∵为偶函数,为奇函数,∴,, 不妨用-代换+= ………①中的, ∴即-……② 显见①+②即可消去,求出函数再代入①求出 5.赋值法:给自变量取特殊值,从而发现规律,求出的表达式 例6:设的定义域为自然数集,且满足条件,及=1,求 解:∵的定义域为N,取=1,则有 ∵=1,∴=+2,…… 以上各式相加,有=1+2+3+……+=∴ 二、利用函数性质,解的有关问题 1.判断函数的奇偶性: 例7 已知,对一切实数、都成立,且,求证为偶函数。 证明: 2.确定参数的取值范围 例8:奇函数在定义域(-1,1)内递减,求满足的实数的取值范围。 解: 3.解不定式的有关题目 例9:如果=对任意的有,比较的大小 解: 五类抽象函数解法 1、线性函数型抽象函数 线性函数型抽象函数,是由线性函数抽象而得的函数。 例1、已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。 分析: 例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。 分析: 2、指数函数型抽象函数 例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。求: (1)f(0); (2)对任意值x,判断f(x)值的正负。 分析: 例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x ∈N;②;③f(2)=4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。 分析: 3、对数函数型抽象函数 对数函数型抽象函数,即由对数函数抽象而得到的函数。 例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求: (1)f(1); (2)若f(x)+f(x-8)≤2,求x的取值范围。 分析: 例6、设函数y=f(x)的反函数是y=g(x)。如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。 4、三角函数型抽象函数 三角函数型抽象函数即由三角函数抽象而得到的函数。 例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0。试问:(1)f(x)的奇偶性如何?说明理由。(2)在(0,4a)上,f(x)的单调性如何?说明理由。 5、幂函数型抽象函数 幂函数型抽象函数,即由幂函数抽象而得到的函数。 例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。 (1)判断f(x)的奇偶性; (2)判断f(x)在[0,+∞)上的单调性,并给出证明; (3)若,求a的取值范围。 抽象函数具有的性质 特殊初等函数 或 ,且 或 若的定义域为,则,且 且 抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数的定义域是[1,2],求f(x)的定义域。 解: 例2. 已知函数的定义域是,求函数的定义域。 解 二、求值问题 例3. 已知定义域为的函数f(x),同时满足下列条件:①;②,求f(3),f(9)的值。 解: 三、值域问题 例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。 解: 四、解析式问题 例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。 解: 五、单调性问题 例6. 设f(x)定义于实数集上,当时,,且对于任意实数x、y,有,求证:在R上为增函数。 证明: 六、奇偶性问题 例7. 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性。 解: 七、对称性问题 例8. 已知函数满足,求的值。 解: 八、网罗综合问题 例9. 定义在R上的函数f(x)满足:对任意实数m,n,总有,且当x>0时,0<f(x)<1。 (1)判断f(x)的单调性;(2)设,,若,试确定a的取值范围。 解: 设函数的定义域为全体R,当x<0时,,且对任意的实数x,y∈R,有成立,数列满足,且(n∈N*) (Ⅰ)求证:是R上的减函数; (Ⅱ)求数列的通项公式; (Ⅲ)若不等式对一切n∈N*均成立,求k的 最大值. 设函数满足,且对任意,都有 . (Ⅰ)求的解析式; (Ⅱ)若数列满足:(),且, 求数列的通项; (Ⅲ)求证: 14分)若数列满足其中为常数,则称数列为等方差数列.已知等方差数列满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和; (Ⅲ)记,则当实数大于4时,不等式能否对于一切的恒成立?请说明理由. 解析: 已知在()上有意义, <1> 数列的通项公式 <2> 设 解: 19、设函数的定义域为R,对任意,且, <1> 求证: <2> 若上是单调递减函数 <3> 求的最小正周期 解: 设为正整数,规定:,已知: <1> 解不等式: <2> 设集合,对任意 <3> 探求的值 <4> 若集合,证明:B中至少含有8个元素 解:展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




关于抽象函数问题的解法.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12071994.html