平面向量基本概念.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 基本概念
- 资源描述:
-
平面向量基本概念回归课本复习材料1 一.考试内容: 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移. 二.考试要求: (1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式. 【注意】向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切.在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用. 三.基础知识: 1.实数与向量的积的运算律:设λ、μ为实数,那么 (1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 2.向量的数量积的运算律: (1) a·b= b·a (交换律); (2)(a)·b= (a·b)=a·b= a·(b); (3)(a+b)·c= a ·c +b·c. 切记:两向量不能相除(相约);向量的“乘法”不满足结合律, 3.平面向量基本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 4.向量平行的坐标表示 设a=,b=,且b0, 则a∥b(b0). 5.a与b的数量积(或内积)a·b=|a||b|cosθ. 6. a·b的几何意义 数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 7.平面向量的坐标运算 (1)设a=,b=,则a+b=. (2)设a=,b=,则a-b=. (3)设A,B, 则. (4)设a=,则a=. (5)设a=,b=,则a·b=. 8.两向量的夹角公式 (a=,b=). 9.平面两点间的距离公式A,B. = 10.向量的平行与垂直 设a=,b=,且b0, 则a||bb=λa . ab(a0)a·b=0. 11.线段的定比分公式 设,,是线段的分点,是实数,且,则 (). 12.三角形的重心坐标公式 △ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是. 13.点的平移公式 注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为. 14.“按向量平移”的几个结论 (1)点按向量a=平移后得 到点. (2) 函数的图象按向量a=平移后得到图象,则的函数解析式为 . (3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为. (4)曲线:按向量a=平移后得到图象,则的方程为. (5) 向量m=按向量a=平移后得到的向量仍然为m=. 注意:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊! 15. 三角形五“心”向量形式的充要条件 设为所在平面上一点,角所对边长分别为,则 (1)为的外心. (2)为的重心. (3)为的垂心 . (4)为的内心. (5)为的的旁心 . 四.基本概念 1、向量有关概念: (1)向量的概念 向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。 提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有); ④三点共线共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 2、向量的表示方法: (1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; (2)符号表示法:用一个小写的英文字母来表示,如,,等; (3)坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为 ,称为向量的坐标,=叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 3. 实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当>0时,的方向与的方向相同,当<0时,的方向与的方向相反,当=0时,,注意:≠0。 4、平面向量的数量积: (1)两个向量的夹角:对于非零向量,,作,称为向量,的夹角,当=0时,,同向,当=时,,反向,当=时,,垂直。 当为锐角时,>0,且不同向,是为锐角的必要非充分条件;当为钝角时,<0,且不反向,是为钝角的必要非充分条件; (2)在上的投影为,它是一个实数,但不一定大于0。 6、向量的运算: 如图,在平面斜坐标系中,,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若,其中分别为与x轴、y轴同方向的单位向量,则P点斜坐标为。 7.线段的定比分点: 的符号与分点P的位置之间的关系:当P点在线段 PP上时>0;当P点在线段 PP的延长线上时<-1;当P点在线段PP的延长线上时;若点P分有向线段所成的比为,则点P分有向线段所成的比为。 3展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




平面向量基本概念.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12023405.html