分享
分销 收藏 举报 申诉 / 20
播放页_导航下方通栏广告

类型实验三离散时间信号的频域分析第一部分.doc

  • 上传人:仙人****88
  • 文档编号:12004855
  • 上传时间:2025-08-26
  • 格式:DOC
  • 页数:20
  • 大小:363.59KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    实验 离散 时间 信号 分析 第一 部分
    资源描述:
    Name: Yifan Chen 20112121006 Section: Laboratory Exercise 3 DISCRETE-TIME SIGNALS: FREQUENCY-DOMAIN REPRESENTATIONS 3.1 DISCRETE-TIME FOURIER TRANSFORM Project 3.1 DTFT Computation A copy of Program P3_1 is given below: < Insert program code here. Copy from m-file(s) and paste. > % Program P3_1 % Evaluation of the DTFT clf; % Compute the frequency samples of the DTFT w = -4*pi:8*pi/511:4*pi; num = [2 1];den = [1 -0.6]; h = freqz(num, den, w); % Plot the DTFT subplot(2,1,1) plot(w/pi,real(h));grid title('Real part of H(e^{j\omega})') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) plot(w/pi,imag(h));grid title('Imaginary part of H(e^{j\omega})') xlabel('\omega /\pi'); ylabel('Amplitude'); pause subplot(2,1,1) plot(w/pi,abs(h));grid title('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) plot(w/pi,angle(h));grid title('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi'); Answers: Q3.1 The expression of the DTFT being evaluated in Program P3_1 is - The function of the pause command is - causes M-files to stop and wait for you to press any key before continuing. Q3.2 The plots generated by running Program P3_1 are shown below: < Insert MATLAB figure(s) here. Copy from figure window(s) and paste. > The DTFT is a period function of w. Its period is - 2 pi The types of symmetries exhibited by the four plots are as follows: Real part of H(e^{j\omega}) is eve symmetries; Imaginary part of H(e^{j\omega}) is ode symmetries; Magnitude Spectrum |H(e^{j\omega})| is eve symmetries; Phase Spectrum arg[H(e^{j\omega})] is ode symmetries; Q3.3 The required modifications to Program P3_1 to evaluate the given DTFT of Q3.3 are given below: < Insert program code here. Copy from m-file(s) and paste. > % Program Q3_3 % Evaluation of the DTFT clf; % Compute the frequency samples of the DTFT w = 0:pi/511:pi; num = [0.7 -0.5 0.3 1];den = [1 0.3 -0.5 0.7]; h = freqz(num, den, w); % Plot the DTFT subplot(2,1,1) plot(w/pi,real(h));grid title('Real part of H(e^{j\omega})') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) plot(w/pi,imag(h));grid title('Imaginary part of H(e^{j\omega})') xlabel('\omega /\pi'); ylabel('Amplitude'); pause subplot(2,1,1) plot(w/pi,abs(h));grid title('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) plot(w/pi,angle(h));grid title('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi'); ylabel('Phase, radians'); The plots generated by running the modified Program P3_1 are shown below: < Insert MATLAB figure(s) here. Copy from figure window(s) and paste. > The DTFT is a perio function of w. Its period is – 2pi The jump in the phase spectrum is caused by - the real parts saltus step,the phase saltus set up. The phase spectrum evaluated with the jump removed by the command unwrap is as given below: < Insert MATLAB figure(s) here. Copy from figure window(s) and paste. > % Program Q3_3 % Evaluation of the DTFT clf; % Compute the frequency samples of the DTFT w = 0:pi/511:pi; num = [0.7 -0.5 0.3 1];den = [1 0.3 -0.5 0.7]; h = freqz(num, den, w); subplot(2,1,1) plot(w/pi,abs(h));grid title('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) p = angle(h(:)); plot(w/pi,unwrap(p));grid title('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi'); ylabel('Phase, radians'); Q3.5 The required modifications to Program P3_1 to plot the phase in degrees are indicated below: < Insert program code here. Copy from m-file(s) and paste. > clf w=-4*pi:8*pi/511:4*pi; num=[2 1];den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w,real(h));grid; title('H(e^{j\angle}的实部') xlabel('\angle'); ylabel('振幅'); subplot(2,1,2) plot(w/pi,imag(h)); grid title('H(e^{j\angle}的虚部') xlabel('\angle/'); ylabel('振幅'); figure(2); subplot(2,1,1) plot(w,abs(h));grid title('|H(e^{j\angle})|幅度谱') xlabel('\angle/'); ylabel('振幅'); subplot(2,1,2) plot(w,angle(h));grid title('相位谱arg[H(e^{j\angle})]') xlabel('angle'); ylabel('以角度为单位的相位'); ct 3.2 DTFT Properties Answers: Q3.6 The modified Program P3_2 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: < Insert program code here. Copy from m-file(s) and paste. > % Program P3_2 % Time-Shifting Properties of DTFT clf; w = -pi:2*pi/255:pi; wo = 0.4*pi;D=10; num=[1 2 3 4 5 6 7 8 9]; h1 = freqz(num, 1, w); h2 = freqz([zeros(1,D) num], 1, w); subplot(2,2,1) plot(w/pi,abs(h1));grid title('Magnitude Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,2) plot(w/pi,abs(h2));grid title('Magnitude Spectrum of Time-Shifted Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,3) plot(w/pi,angle(h1));grid title('Phase Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); subplot(2,2,4) plot(w/pi,angle(h2));grid title('Phase Spectrum of Time-Shifted Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); The parameter controlling the amount of time-shift is - D=10,[zeros(1,D) num] Q3.7 The plots generated by running the modified program are given below: < Insert MATLABfigure(s) here. Copy from figure window(s) and paste. > figure(s) here. Copy from figure window(s) and paste. > From these plots we make the following observations:In the limited length of vector, in the original sequence for discrete time Fourier transform, amplitude and phase is changed. From the continuous time, continuous frequency, is a continuous time, discrete frequency. Q3.10 The modified Program P3_3 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: < Insert program code here. Copy from m-file(s) and paste. > % Program P3_3 % Time-Shifting Properties of DTFT clf; w = -pi:2*pi/255:pi; wo = 0.4*pi; num1=[1 3 5 7 9 11 13 15 17]; L = length(num1); h1 = freqz(num1, 1, w); n = 0:L-1; num2 = exp(wo*i*n).*num1; h2 = freqz(num2, 1, w); subplot(2,2,1) plot(w/pi,abs(h1));grid title('Magnitude Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,2) plot(w/pi,abs(h2));grid title('Magnitude Spectrum of Time-Shifted Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,3) plot(w/pi,angle(h1));grid title('Phase Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); subplot(2,2,4) plot(w/pi,angle(h2));grid title('Phase Spectrum of Time-Shifted Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); The parameter controlling the amount of frequency-shift is -wo Q3.12 Program P3_3 was run for the following value of the frequency-shift - The plots generated by running the modified program are given below: < Insert MATLAB figure(s) here. Copy from figure window(s) and paste. > clf; w = -pi:2*pi/255:pi; wo = 3*pi; num1=[1 3 5 7 9 11 13 15 17]; L = length(num1); h1 = freqz(num1, 1, w); n = 0:L-1; num2 = exp(wo*i*n).*num1; h2 = freqz(num2, 1, w); subplot(2,2,1) plot(w/pi,abs(h1));grid title('Magnitude Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,2) plot(w/pi,abs(h2));grid title('Magnitude Spectrum of Time-Shifted Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,3) plot(w/pi,angle(h1));grid title('Phase Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); subplot(2,2,4) plot(w/pi,angle(h2));grid title('Phase Spectrum of Time-Shifted Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); From these plots we make the following observations:Select different values of frequency shift, can get different results. Q3.14 The modified Program P3_4 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: < Insert program code here. Copy from m-file(s) and paste. > % Program P3_4 % Convolution Property of DTFT clf; w = -pi:2*pi/255:pi; x1=[1 3 5 7 9 11 13 15 17]; x2=[1 -2 3 -2 1]; y = conv(x1,x2); h1 = freqz(x1, 1, w); h2 = freqz(x2, 1, w); hp = h1.*h2; h3 = freqz(y,1,w); subplot(2,2,1) plot(w/pi,abs(hp));grid title('Product of Magnitude Spectra') xlabel('\omega /\pi'); ylabel('Product of Amplitude'); subplot(2,2,2) plot(w/pi,abs(h3));grid title('Magnitude Spectrum of Convolved Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,3) plot(w/pi,angle(hp));grid title('Sum of Phase Spectra') xlabel('\omega /\pi'); ylabel('Phase, radians'); subplot(2,2,4) plot(w/pi,angle(h3));grid title('Phase Spectrum of Convolved Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); Q3.17 The modified Program P3_5 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: < Insert program code here. Copy from m-file(s) and paste. > % Program P3_5 % Modulation Property of DTFT clf; w = -pi:2*pi/255:pi; x1=[1 3 5 7 9 11 13 15 17]; x2=[1 -1 1 -1 1 -1 1 -1 1]; y=x1.*x2; h1 = freqz(x1, 1, w); h2 = freqz(x2, 1, w); h3 = freqz(y,1,w); subplot(3,1,1) plot(w/pi,abs(h1));grid title('Magnitude Spectrum of First Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(3,1,2) plot(w/pi,abs(h2));grid title('Magnitude Spectrum of Second Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(3,1,3) plot(w/pi,abs(h3));grid title('Magnitude Spectrum of Product Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); Q3.20 The modified Program P3_6 created by adding appropriate comment statements, and adding program statements for labeling the two axes of each plot being generated by the program is given below: < Insert program code here. Copy from m-file(s) and paste. > % Program P3_6 % Time-Reversal Property of DTFT clf; w = -pi:2*pi/255:pi; num=[1 2 3 4]; L = length(num)-1; h1 = freqz(num, 1, w); h2 = freqz(fliplr(num), 1, w); h3 = exp(w*L*i).*h2; subplot(2,2,1) plot(w/pi,abs(h1));grid title('Magnitude Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,2) plot(w/pi,abs(h3));grid title('Magnitude Spectrum of Time-Reversed Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,3) plot(w/pi,angle(h1));grid title('Phase Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); subplot(2,2,4) plot(w/pi,angle(h3));grid title('Phase Spectrum of Time-Reversed Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); The program implements the time-reversal operation as follows - From these plots we make the following observations: First of all, using the reverse function will row vector of molecular coefficient inversion, that is, from the original [1, 2, 3, 4] gone bad now [4 3 2 1], and then after the coefficient inversion sequence multiplied by the exp (L * w * I), make all the original molecules exp (- w * I) into the exp (w * I), so the x (n), thus to realize the flip operation time Q3.22 Program P3_6 was run for the following two different sets of sequences of varying lengths - The plots generated by running the modified program are given below: < Insert MATLAB figure(s) here. Copy from figure window(s) and paste. > clf; w = -pi:2*pi/255:pi; num=[1 3 6 9]; L = length(num)-1; h1 = freqz(num, 1, w); h2 = freqz(fliplr(num), 1, w); h3 = exp(w*L*i).*h2; subplot(2,2,1) plot(w/pi,abs(h1));grid title('Magnitude Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,2) plot(w/pi,abs(h3));grid title('Magnitude Spectrum of Time-Reversed Sequence') xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,2,3) plot(w/pi,angle(h1));grid title('Phase Spectrum of Original Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); subplot(2,2,4) plot(w/pi,angle(h3));grid title('Phase Spectrum of Time-Reversed Sequence') xlabel('\omega /\pi'); ylabel('Phase, radians'); From these plots we make the following observations: Choose the different sequence length, can get different results.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:实验三离散时间信号的频域分析第一部分.doc
    链接地址:https://www.zixin.com.cn/doc/12004855.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork