分享
分销 收藏 举报 申诉 / 6
播放页_导航下方通栏广告

类型不等式的证明方案0.doc

  • 上传人:仙人****88
  • 文档编号:11717656
  • 上传时间:2025-08-08
  • 格式:DOC
  • 页数:6
  • 大小:257.50KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    不等式 证明 方案
    资源描述:
    不等式的证明策略 难点磁:已知a>0,b>0,a+b=1 证法一:(分析综合法) 欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab≤或ab≥8. ∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2,∴ab≤,从而得证. 证法二:(均值代换法) 设a=+t1,b=+t2. ∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|< 显然当且仅当t=0,即a=b=时,等号成立. 证法三:(比较法) ∵a+b=1,a>0,b>0,∴a+b≥2,∴ab≤ 证法四:(综合法) ∵a+b=1, a>0,b>0,∴a+b≥2,∴ab≤. 证法五:(三角代换法) ∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,) ●案例探究 [例1]证明不等式(n∈N*) 证法一:(1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n=k(k≥1)时,不等式成立,即1+<2, ∴当n=k+1时,不等式成立. 综合(1)、(2)得:当n∈N*时,都有1+<2. 证法二:对任意k∈N*,都有: [例2]求使≤a(x>0,y>0)恒成立的a的最小值. 解法一:由于a的值为正数,将已知不等式两边平方,得: x+y+2≤a2(x+y),即2≤(a2-1)(x+y), ① ∴x,y>0,∴x+y≥2, ② 当且仅当x=y时,②中有等号成立. 比较①、②得a的最小值满足a2-1=1, ∴a2=2,a= (因a>0),∴a的最小值是. 解法二:设. ∵x>0,y>0,∴x+y≥2 (当x=y时“=”成立), ∴≤1,的最大值是1. 从而可知,u的最大值为, 又由已知,得a≥u,∴a的最小值为. 解法三:∵y>0, ∴原不等式可化为+1≤a, 设=tanθ,θ∈(0,). ∴tanθ+1≤a;即tanθ+1≤asecθ ∴a≥sinθ+cosθ=sin(θ+), ③ 又∵sin(θ+)的最大值为1(此时θ=). 由③式可知a的最小值为. ●歼灭难点训练 一、填空题 1.已知x、y是正变数,a、b是正常数,且=1,x+y的最小值为__________. 解析:令=cos2θ,=sin2θ,则x=asec2θ,y=bcsc2θ, ∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θ≥a+b+2 2.设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是__________ 2.解析:由0≤|a-d|<|b-c|(a-d)2<(b-c)2(a+b)2-4ad<(b+c)2-4bc ∵a+d=b+c,∴-4ad<-4bc,故ad>bc. 3.若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________. .解析:把p、q看成变量,则m<p<n,m<q<n. 答案:m<p<q<n 二、解答题 4.已知a,b,c为正实数,a+b+c=1. 求证:(1)a2+b2+c2≥ .(1)证法一:a2+b2+c2-=(3a2+3b2+3c2-1) =[3a2+3b2+3c2-(a+b+c)2]=[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] =[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥ 证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥ 证法三:∵ ∴a2+b2+c2≥ ∴a2+b2+c2≥ 证法四:设a=+α,b=+β,c=+γ. ∵a+b+c=1, ∴α+β+γ=0 ∴a2+b2+c2=(+α)2+(+β)2+(+γ)2 =+ (α+β+γ)+α2+β2+γ2=+α2+β2+γ2≥ ∴a2+b2+c2≥ (2) 证明≤6 ∴原不等式成立. 证法二: ∴≤<6 ∴原不等式成立. 5.已知x,y,z∈R,且x+y+z=1,x2+y2+z2=,证明:x,y,z∈[0,] .证法一:由x+y+z=1,x2+y2+z2=,得x2+y2+(1-x-y)2=,整理成关于y的一元二次方程得: 2y2-2(1-x)y+2x2-2x+=0,∵y∈R,故Δ≥0 ∴4(1-x)2-4×2(2x2-2x+)≥0,得0≤x≤,∴x∈[0,] 同理可得y,z∈[0,] 证法二:设x=+x′,y=+y′,z=+z′,则x′+y′+z′=0, 于是=(+x′)2+(+y′)2+(+z′)2 =+x′2+y′2+z′2+ (x′+y′+z′) =+x′2+y′2+z′2≥+x′2+=+x′2 故x′2≤,x′∈[-,],x∈[0,],同理y,z∈[0,] 证法三:设x、y、z三数中若有负数,不妨设x<0,则x2>0,=x2+y2+z2≥x2+ >,矛盾. x、y、z三数中若有最大者大于,不妨设x>,则=x2+y2+z2≥x2+=x2+=x2-x+ =x(x-)+>;矛盾. 故x、y、z∈[0,] 6.(★★★★★)若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1. .证法一:因a>0,b>0,a3+b3=2,所以 (a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0. 即(a+b)3≤23,又a+b>0,所以a+b≤2,因为2≤a+b≤2, 所以ab≤1. 证法二:设a、b为方程x2-mx+n=0的两根,则, 因为a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0 ① 因为2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n) 所以n= ② 将②代入①得m2-4()≥0, 即≥0,所以-m3+8≥0,即m≤2,所以a+b≤2, 由2≥m 得4≥m2,又m2≥4n,所以4≥4n, 即n≤1,所以ab≤1. 证法三:因a>0,b>0,a3+b3=2,所以 2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b) 于是有6≥3ab(a+b),从而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3= (a+b)3,所以a+b≤2,(下略) 证法四:因为 ≥0, 所以对任意非负实数a、b,有≥ 因为a>0,b>0,a3+b3=2,所以1=≥, ∴≤1,即a+b≤2,(以下略) 证法五:假设a+b>2,则 a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1, 又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab) 因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:不等式的证明方案0.doc
    链接地址:https://www.zixin.com.cn/doc/11717656.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork