分享
分销 收藏 举报 申诉 / 24
播放页_导航下方通栏广告

类型汇编《因动点产生的直角三角形问题》含答案.doc

  • 上传人:知****运
  • 文档编号:11306746
  • 上传时间:2025-07-15
  • 格式:DOC
  • 页数:24
  • 大小:1,014.25KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    因动点产生的直角三角形问题 汇编 产生 直角三角形 问题 答案
    资源描述:
    因动点产生的直角三角形问题 例1 如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G. (1)当CE=3时,求S△CEF∶S△CAF的值; (2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式; (3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长. 图1 例1 如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G. (1)当CE=3时,求S△CEF∶S△CAF的值; (2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式; (3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长. 图1 动感体验 请打开几何画板文件名“15虹口25”,拖动直角顶点C运动,可以体验到,CG=2GB保持不变,△ABC的形状在改变,EA=EM保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E在射线CD上运动,可以体验到,△AEG可以两次成为直角三角形. 思路点拨 1.第(1)题中的△CEF和△CAF是同高三角形,面积比等于底边的比. 2.第(2)题中的△ABC是斜边为定值的形状不确定的直角三角形. 3.第(3)题中的直角三角形AEG分两种情况讨论. 满分解答 (1)如图2,由CE//AB,得. 由于△CEF与△CAF是同高三角形, 所以S△CEF∶S△CAF=3∶13. (2)如图3,延长AG交射线CD于M. 图2 由CM//AB,得.所以CM=2AB=26. 由CM//AB,得∠EMA=∠BAM. 又因为AM平分∠BAE,所以∠BAM=∠EAM. 所以∠EMA=∠EAM.所以y=EA=EM=26-x. 图3 图4 (3)在Rt△ABC中, AB=13,AC=5,所以BC=12. ①如图 4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN. 所以G是EN的中点. 所以G是BC的中点,BG=6. ②如图5,当∠AEG=90°时,由△CAF∽△EGF,得. 由CE//AB,得. 所以.又因为∠AFG=∠BFA,所以△AFG∽△BFA. 所以∠FAG=∠B.所以∠GAB=∠B.所以GA=GB. 作GH⊥AH,那么BH=AH=. 在Rt△GBH中,由cos∠B=,得BG=÷=. 图5 图6 考点伸展 第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB. 如果用四点共圆,那么很容易. 如图6,由A、C、E、G四点共圆,直接得到∠2=∠4. 上海版教材不学习四点共圆,比较麻烦一点的思路还有: 如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt△AEG斜边上的中线,所以PC=PE=PA=PG. 所以∠1=2∠2,∠3=2∠5. 如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5), 又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4. 所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB. 图7 图8 例2 如图1,二次函数y=a(x2-2mx-3m2)(其中a、m是常数,且a>0,m>0)的图像与x轴分别交于A、B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图像上,CD//AB,联结AD.过点A作射线AE交二次函数的图像于点E,AB平分∠DAE. (1)用含m的式子表示a; (2)求证:为定值; (3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G,联结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由. 图1 例2 如图1,二次函数y=a(x2-2mx-3m2)(其中a、m是常数,且a>0,m>0)的图像与x轴分别交于A、B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图像上,CD//AB,联结AD.过点A作射线AE交二次函数的图像于点E,AB平分∠DAE. (1)用含m的式子表示a; (2)求证:为定值; (3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G,联结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由. 图1 动感体验 请打开几何画板文件名“14苏州29”,拖动y轴正半轴上表示实数m的点运动,可以体验到,点E、D、F到x轴的距离都为定值. 思路点拨 1.不算不知道,一算真奇妙.通过二次函数解析式的变形,写出点A、B、F的坐标后,点D的坐标也可以写出来.点E的纵坐标为定值是算出来的. 2.在计算的过程中,第(1)题的结论及其变形反复用到. 3.注意到点E、D、F到x轴的距离正好是一组常见的勾股数(5,3,4),因此过点F作AD的平行线与x轴的交点,就是要求的点G. 满分解答 (1)将C(0,-3)代入y=a(x2-2mx-3m2),得-3=-3am2.因此. (2)由y=a(x2-2mx-3m2)=a(x+m)(x-3m)=a(x-m)2-4axm2=a(x-m)2-4, 得A(-m, 0),B(3m, 0),F(m, -4),对称轴为直线x=m. 所以点D的坐标为(2m,-3). 设点E的坐标为(x, a(x+m)(x-3m)). 如图2,过点D、E分别作x轴的垂线,垂足分别为D′、E′. 由于∠EAE′=∠DAD′,所以.因此. 所以am(x-3m)=1.结合,于是得到x=4m. 当x=4m时,y=a(x+m)(x-3m)=5am2=5.所以点E的坐标为(4m, 5). 所以. 图2 图3 (3)如图3,由E(4m, 5)、D(2m,-3)、F(m,-4), 可知点E、D、F到x轴的距离分别为5、4、3. 那么过点F作AD的平行线与x轴的负半轴的交点,就是符合条件的点G. 证明如下:作FF′⊥x轴于F′,那么. 因此.所以线段GF、AD、AE的长围成一个直角三角形. 此时GF′=4m.所以GO=3m,点G的坐标为(-3m, 0). 考点伸展 第(3)题中的点G的另一种情况,就是GF为直角三角形的斜边. 此时.因此. 所以.此时. 例3 如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q. (1)求点A、B、C的坐标; (2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由; (3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由. 图1 例3 如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q. (1)求点A、B、C的坐标; (2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由; (3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由. 图1 动感体验 请打开几何画板文件名“13山西26”,拖动点P在线段OB上运动,可以体验到,当P运动到OB的中点时,四边形CQMD和四边形CQBM都是平行四边形.拖动点P在线段EB上运动,可以体验到,∠DBQ和∠BDQ可以成为直角. 请打开超级画板文件名“13山西26”,拖动点P在线段OB上运动,可以体验到,当P运动到OB的中点时,四边形CQMD和四边形CQBM都是平行四边形.拖动点P在线段EB上运动,可以体验到,∠DBQ和∠BDQ可以成为直角. 思路点拨 1.第(2)题先用含m的式子表示线段MQ的长,再根据MQ=DC列方程. 2.第(2)题要判断四边形CQBM的形状,最直接的方法就是根据求得的m的值画一个准确的示意图,先得到结论. 3.第(3)题△BDQ为直角三角形要分两种情况求解,一般过直角顶点作坐标轴的垂线可以构造相似三角形. 满分解答 (1)由,得A(-2,0),B(8,0),C(0,-4). (2)直线DB的解析式为. 由点P的坐标为(m, 0),可得,. 所以MQ=. 当MQ=DC=8时,四边形CQMD是平行四边形. 解方程,得m=4,或m=0(舍去). 此时点P是OB的中点,N是BC的中点,N(4,-2),Q(4,-6). 所以MN=NQ=4.所以BC与MQ互相平分. 所以四边形CQBM是平行四边形. 图2 图3 (3)存在两个符合题意的点Q,分别是(-2,0),(6,-4). 考点伸展 第(3)题可以这样解:设点Q的坐标为. ①如图3,当∠DBQ=90°时, .所以. 解得x=6.此时Q(6,-4). ②如图4,当∠BDQ=90°时, .所以. 解得x=-2.此时Q(-2,0). 图3 图4 例4 如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C. (1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式. 图1 例4 如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C. (1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式. 图1 动感体验 请打开几何画板文件名“12广州24”,拖动点M在以AB为直径的圆上运动,可以体验到,当直线与圆相切时,符合∠AMB=90°的点M只有1个. 请打开超级画板文件名“12广州24”,拖动点M在以AB为直径的圆上运动,可以体验到,当直线与圆相切时,符合∠AMB=90°的点M只有1个. 思路点拨 1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D有两个. 2.当直线l与以AB为直径的圆相交时,符合∠AMB=90°的点M有2个;当直线l与圆相切时,符合∠AMB=90°的点M只有1个. 3.灵活应用相似比解题比较简便. 满分解答 (1)由, 得抛物线与x轴的交点坐标为A(-4, 0)、B(2, 0).对称轴是直线x=-1. (2)△ACD与△ACB有公共的底边AC,当△ACD的面积等于△ACB的面积时,点B、D到直线AC的距离相等. 过点B作AC的平行线交抛物线的对称轴于点D,在AC的另一侧有对应的点D′. 设抛物线的对称轴与x轴的交点为G,与AC交于点H. 由BD//AC,得∠DBG=∠CAO.所以. 所以,点D的坐标为. 因为AC//BD,AG=BG,所以HG=DG. 而D′H=DH,所以D′G=3DG.所以D′的坐标为. 图2 图3 (3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M. 以AB为直径的⊙G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M了. 联结GM,那么GM⊥l. 在Rt△EGM中,GM=3,GE=5,所以EM=4. 在Rt△EM1A中,AE=8,,所以M1A=6. 所以点M1的坐标为(-4, 6),过M1、E的直线l为. 根据对称性,直线l还可以是. 考点伸展 第(3)题中的直线l恰好经过点C,因此可以过点C、E求直线l的解析式. 在Rt△EGM中,GM=3,GE=5,所以EM=4. 在Rt△ECO中,CO=3,EO=4,所以CE=5. 因此三角形△EGM≌△ECO,∠GEM=∠CEO.所以直线CM过点C. 例5 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k). (1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值. 动感体验 请打开几何画板文件名“12杭州22”,拖动表示实数k的点在y轴上运动,可以体验到,当k<0并且在抛物线的对称轴左侧,反比例函数与二次函数都是y随x增大而增大.观察抛物线的顶点Q与⊙O的位置关系,可以体验到,点Q有两次可以落在圆上. 请打开超级画板文件名“12杭州22”,拖动表示实数k的点在y轴上运动,可以体验到,当k<0并且在抛物线的对称轴左侧,反比例函数与二次函数都是y随x增大而增大.观察抛物线的顶点Q与⊙O的位置关系,可以体验到,点Q有两次可以落在圆上. 例5 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k). (1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值. 动感体验 请打开几何画板文件名“12杭州22”,拖动表示实数k的点在y轴上运动,可以体验到,当k<0并且在抛物线的对称轴左侧,反比例函数与二次函数都是y随x增大而增大.观察抛物线的顶点Q与⊙O的位置关系,可以体验到,点Q有两次可以落在圆上. 请打开超级画板文件名“12杭州22”,拖动表示实数k的点在y轴上运动,可以体验到,当k<0并且在抛物线的对称轴左侧,反比例函数与二次函数都是y随x增大而增大.观察抛物线的顶点Q与⊙O的位置关系,可以体验到,点Q有两次可以落在圆上. 思路点拨 1.由点A(1,k)或点B(-1,-k)的坐标可以知道,反比例函数的解析式就是.题目中的k都是一致的. 2.由点A(1,k)或点B(-1,-k)的坐标还可以知道,A、B关于原点O对称,以AB为直径的圆的圆心就是O. 3.根据直径所对的圆周角是直角,当Q落在⊙O上是,△ABQ是以AB为直径的直角三角形. 满分解答 (1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是. 当k=-2时,反比例函数的解析式是. (2)在反比例函数中,如果y随x增大而增大,那么k<0. 当k<0时,抛物线的开口向下,在对称轴左侧,y随x增大而增大. 图1 抛物线y=k(x2+x+1)=的对称轴是直线. 所以当k<0且时,反比例函数与二次函数都是y随x增大而增大. (3)抛物线的顶点Q的坐标是,A、B关于原点O中心对称, 当OQ=OA=OB时,△ABQ是以AB为直径的直角三角形. 由OQ2=OA2,得. 解得(如图2),(如图3). 图2 图3 考点伸展 如图4,已知经过原点O的两条直线AB与CD分别与双曲线(k>0)交于A、B和C、D,那么AB与CD互相平分,所以四边形ACBD是平行四边形. 问平行四边形ABCD能否成为矩形?能否成为正方形? 如图5,当A、C关于直线y=x对称时,AB与CD互相平分且相等,四边形ABCD是矩形. 因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以OA与OC无法垂直,因此四边形ABCD不能成为正方形. 图4 图5 例6 设直线l1:y=k1x+b1与l2:y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线. 图1 (1)已知直线①;②;③;④和点C(0,2),则直线_______和_______是点C的直角线(填序号即可); (2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式. 例6 设直线l1:y=k1x+b1与l2:y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线. 图1 (1)已知直线①;②;③;④和点C(0,2),则直线_______和_______是点C的直角线(填序号即可); (2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式. 动感体验 请打开几何画板文件名“11浙江23”,拖动点P在OC上运动,可以体验到,∠APB有两个时刻可以成为直角,此时△BCP∽△POA. 答案 (1)直线①和③是点C的直角线. (2)当∠APB=90°时,△BCP∽△POA.那么,即.解得OP=6或OP=1. 如图2,当OP=6时,l1:, l2:y=-2x+6. 如图3,当OP=1时,l1:y=3x+1, l2:. 图2 图3 例7 在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上. (1)求点B的坐标; (2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动). ①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; ②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值. 图1 例7 在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上. (1)求点B的坐标; (2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动). ①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; ②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值. 图1 动感体验 请打开几何画板文件名“10北京24”,拖动点P从O向A运动,可以体验到,两个等腰直角三角形的边有三个时刻可以共线. 思路点拨 1.这个题目最大的障碍,莫过于无图了. 2.把图形中的始终不变的等量线段罗列出来,用含有t的式子表示这些线段的长. 3.点C的坐标始终可以表示为(3t,2t),代入抛物线的解析式就可以计算此刻OP的长. 4.当两个等腰直角三角形有边共线时,会产生新的等腰直角三角形,列关于t的方程就可以求解了. 满分解答 (1) 因为抛物线经过原点,所以. 解得,(舍去).因此.所以点B的坐标为(2,4). (2) ①如图4,设OP的长为t,那么PE=2t,EC=2t,点C的坐标为(3t, 2t).当点C落在抛物线上时,.解得. ②如图1,当两条斜边PD与QM在同一条直线上时,点P、Q重合.此时3t=10.解得. 如图2,当两条直角边PC与MN在同一条直线上,△PQN是等腰直角三角形,PQ=PE.此时.解得. 如图3,当两条直角边DC与QN在同一条直线上,△PQC是等腰直角三角形,PQ=PD.此时.解得. 图1 图2 图3 考点伸展 在本题情境下,如果以PD为直径的圆E与以QM为直径的圆F相切,求t的值. 如图5,当P、Q重合时,两圆内切,. 如图6,当两圆外切时,. 图4 图5 图6 例8 如图1,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设. (1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 图1 例8 如图1,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设. (1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 图1 动感体验 请打开几何画板文件名“09嘉兴24”,拖动点B在AN上运动,可以体验到,三角形的两边之和大于第三边,两边之差小于第三边;∠CAB和∠ACB可以成为直角,∠CBA不可能成为直角;观察函数的图象,可以看到,图象是一个开口向下的“U”形,当AB等于1.5时,面积达到最大值. 思路点拨 1.根据三角形的两边之和大于第三边,两边之差小于第三边列关于x的不等式组,可以求得x的取值范围. 2.分类讨论直角三角形ABC,根据勾股定理列方程,根据根的情况确定直角三角形的存在性. 3.把△ABC的面积S的问题,转化为S2的问题.AB边上的高CD要根据位置关系分类讨论,分CD在三角形内部和外部两种情况. 满分解答 (1)在△ABC中,,,,所以 解得. (2)①若AC为斜边,则,即,此方程无实根. ②若AB为斜边,则,解得,满足. ③若BC为斜边,则,解得,满足. 因此当或时,△ABC是直角三角形. (3)在△ABC中,作于D,设,△ABC的面积为S,则. ①如图2,若点D在线段AB上,则.移项,得.两边平方,得.整理,得.两边平方,得.整理,得 所以(). 当时(满足),取最大值,从而S取最大值. 图2 图3 ②如图3,若点D在线段MA上,则. 同理可得,(). 易知此时. 综合①②得,△ABC的最大面积为. 考点伸展 第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设, 例如在图2中,由列方程. 整理,得.所以 . 因此 . 24
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:汇编《因动点产生的直角三角形问题》含答案.doc
    链接地址:https://www.zixin.com.cn/doc/11306746.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork