分享
分销 收藏 举报 申诉 / 6
播放页_导航下方通栏广告

类型勾股定理的逆定理备课素材.doc

  • 上传人:仙人****88
  • 文档编号:11257686
  • 上传时间:2025-07-11
  • 格式:DOC
  • 页数:6
  • 大小:225KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    勾股定理 逆定理 备课 素材
    资源描述:
    第三周集体备课资料 中心发言人:张宏 第十八章 《勾股定理》教材分析及教学建议 本章主要内容是勾股定理及其逆定理。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。 本章教学时间约需8课时,具体安排如下: 18.1 勾股定理 4 课时 18.2 勾股定理的逆定理 3课时 数学活动 小结 1课时 一、教科书内容和课程学习目标 本章知识结构框图: 勾股定理 实际问题 (直角三角形边长计算) 互逆定理 实际问题 (判定直角三角形) 勾股定理的逆定理 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。 勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。 在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。 勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。在教科书中,图18.1-3(1)中的图形经过割补拼接后得到图18.1-3(3)中的图形。由此就证明了勾股定理。通过推理证实命题1的正确性后,教科书顺势指出什么是定理。 由勾股定理可知,已知两条直角边的长a,b,就可以求出斜边c的长。由勾股定理可得或,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长。也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长。教科书相应安排了三个探究栏目,让学生运用勾股定理解决问题。 在第二节中,教科书让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形。从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形。这个猜想可以利用全等三角形证明,得到勾股定理的逆定理。 勾股定理的逆定理给出了判定一个三角形是直角三角形的方法。教科书安排了两个例题,让学生学会运用这种方法。这种方法与前面学过的一些判定方法不同,它通过代数运算“算”出来。实际上利用计算证明几何问题学生已经见过,计算在几何里也是很重要的。从这个意义上讲,勾股定理的逆定理的学习,对开阔学生眼界,进一步体会数学中的各种方法有很大的意义。 几何中有许多互逆的命题,互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念。学生已见过一些互逆命题(定理),例如:“两直线平行,内错角相等”与“内错角相等,两直线平行”;“全等三角形的对应边相等”与“对应边相等的三角形是全等三角形”等,都是互逆命题。勾股定理与勾股定理的逆定理也是互逆的命题,而且这两个命题的题设和结论都比较简单。因此,教科书在前面已有感性认识的基础上,在第二节中,结合勾股定理的逆定理的内容的展开,穿插介绍了逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立。为巩固这些内容,相应配备了一些练习与习题。 本章学习目标如下: 1.体验勾股定理的探索过程,会运用勾股定理解决简单问题; 2.会运用勾股定理的逆定理判定直角三角形; 3.通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。 二、教学建议 本章内容的重点与难点是勾股定理及其应用,勾股定理的逆定理及其应用。勾股定理是解几何题中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一。本章的难点是掌握勾股定理并能熟练的运用勾股定理。要注意:在直角三角形中,反映的是直角三角形的三边关系。直角三角形两直角边a,b的平方和等于斜边的平方和。在其它三角形中不存在这样的关系。这是一个非常重要的定理。它是把形转化为数,它的应用非常广泛。勾股定理的逆定理则是把数转化为形,通过计算判定一个三角形是否为直角三角形。 相关知识点回顾: (1)直角三角形的两个锐角互余 (2)直角三角形中30度角所对的直角边等于斜边的一半。 (3)斜边大于任一条直角边 (4)全等三角形判定方法。 (5)面积公式 学生在本章学习中存在认知误区和思维障碍。 (1)忽视题目中的隐含条件。如在Rt△ABC中,∠B=90,a,b,c分别为三条边,a=3,b=4,求边c的长。不少学生会认为c=5,忽视了b是斜边这一隐含条件。 (2)忽视定理成立的条件是在直角三角形中,有的同学看到三角形的两边是3和4,就会认为第三边是5, (3)考虑问题不全面造成漏解.如已知直角三角形的两边长分别为5和12,求第三边。 (4)通过添加辅助线将非直角三角形转化为直角三角形.如(a)连结两点构造直角三角形(b)作高构造直角三角形(c)构造几何图形解决代数问题。 教学建议 本章教学教师可采用主体性学习的教学模式, 提出问题让学生思考,设计问题让学生做,错误原因让学生找,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索、积极思考、大胆想象、总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人。本章的教学步骤可分五步:探索结论——验证结论—— 初步应用结论—— 证明结论——应用结论解决实际问题。 1、在探索结论阶段,应调动学生的积极性,让学生充分参与 例如,教材设计了在方格纸上通过计算面积的方法探索勾股定理的活动,教师鼓励学生尝试求出方格中三个正方形的面积、比较这三个正方形的面积的关系,由此得到直角三角形三边的关系、通过对几个特殊例子的考察归纳出直角三角形三边之间的一般规律,运用自己的语言表达探索过程和所得结论。 2、在勾股定理的探索和验证过程中,数形结合的思想有较多的体现 例如,在探索勾股定理的过程中,教师应引导学生由正方形的面积想到;而在勾股定理的验证过程中,教师又应引导学生由数想到正方形的面积. 3、初步应用结论阶段的重点是让学生明确:在直角三角形中,知道两边的长度,可以求得第三边的长度,教师应充分利用教材让学生体会勾股定理及其逆定理在现实世界中有着较为广泛的应用,如埃及人利用结绳的方法作出直角,利用勾股定理求出蚂蚁的最短路线等。 4、证明结论阶段主要是理清思路,而不只是介绍某一种证明方法教师在教学中应激发学生探索更多的证明方法,注意训练学生书写规范。 5、应用结论解决实际问题要注意强调两类问题:探索性问题和应用性问题通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造能力 例 有一个边长为50分米的正方形洞口,问用直径为多长的圆形铁片来堵住洞口? 表面看上去这是一个有关圆的问题。其实圆形铁片的直径就应该是等腰三角形的斜边长边长是50分米,把它看成一个直角三角形,然后用勾股定理,两条直角边的平方和等于斜边的平方。就是50x50+50x50=5000 ,答案是50√2=70.5 要求学生记住勾股定理, 然后对待问题套公式, 这样可以解决一系列的问题 6、注重介绍数学史,凸显数学的文化价值 7、关注学生学习过程的评价,对于本章的学习,除了考查勾股定理的解题应用外,还应该关注对学生学习过程的评价。例如,让学生动手截、割、拼、补,使学生参与定理的发现、探索、验证过程,既能培养学生数学的直观能力,又能体现教学的针对性、活动性、开放性与合作性。 三、 常见典型错误简析 (1)如何求第三边? E B A 例1 在Rt△ABC中,∠B=90,a,b,c分别为三条边,a=3,b=4,求边c的长。 不少学生会认为c=5,忽视了b是斜边这一隐含条件。 例2 判断:在△ABC中,AC=3,BC=4,求AB的长 不少学生会认为AB=5, 忽视了△ABC是直角三角形这个条件。 例3 已知直角三角形的两边长分别为5和12,求第三边。 不少学生会认为第三边为13,忽视了12可能是直角边也可能是斜边。 例4 如图,∠A =45, ∠B=∠D=90 ,BC=1,AD=2,求CD的长。 不少学生会在四边形ABCD里面加辅助线,破坏了已知的条件。增加了解题的难度。应该把AB,CD边延长,构造出新的直角三角形,利用勾股定理解题。 (2)蚂蚁怎么走最近? 例5 如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A点有一只蚂蚁,它想吃到上底面上与A点相对的C点处的食物,需要爬行的最短路程是多少?(π的值取3). B A C D C B 本题常见错误有两个:一是不能正确地将圆柱的侧面展开,从而无法进行求解;二是误将圆柱侧面展开图(矩形)的对角线作为所求的AC. A (3)木板能否经过门框? 例6 一个门框的长为2m,宽为1m,如图所示,一块长3 m,宽2.2m的薄木板能否从门框内通过?为什么?不少学生一看此题,就会给出答案: 不能.而不知应先利用勾股定理求出AC的长再进行判断。 (4)梯子底端下滑几米? 例7 一个3 m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5 m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5吗? 本题学生容易错误地理解为梯子的顶端A沿墙下滑0.5 m 时, 梯子底端C向外移动的距离是CD ,因为梯子的长度没有改变, 认为CD=AE,得出错误解答。 (5)湖水如何知深浅? 例8 “荷花问题”:“平平湖水清可鉴, 面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题. 六 中考热点 勾股定理在中考数学中单独命题考查的选择题和填空题相对较少,而主要是与方程、函数、四边形、圆以及相似形等知识综合在一起考查,灵活性强,涉及面广、能力要求高。 A C D B 1(2009年达州)图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是 A.13 B.26 C.47 D.94 【答案】C 2(2009年滨州)如图3,已知△ABC中,AB=17,AC=10,BC边上的高AD=8, 则边BC的长为( ) A.21 B.15 C.6 D.以上答案都不对 【答案】A 3(2009年安顺)图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。 A C D B 【答案】76 4(2009年湖南长沙)如图,等腰中,,是底边上的高,若,则 cm.【答案】4 5 20 15 10 C A B 5(2009恩施市)如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是(   ) A. B.25 C. D.【答案】B 6(2009年滨州)某楼梯的侧面视图如图4所示,其中米,, ,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长 B C A 30° 度应为 .【答案】(2+2)米. 7(2009年四川省内江市)已知Rt△ABC的周长是, 斜边上的中线长是2,则S△ABC=____________【答案】8 8(2009年宜宾)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形. 若斜边AB=3,则图中阴影部分的面积为 .【答案】. 9(2009年崇左)如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AD=2, D A B E C F (第24题) BC=4,延长BC到E,使CE=AD. (1)证明:ΔBAD≌ΔDCE; (2)如果AC⊥BD,求等腰梯形ABCD的高DF的值.答案. 10(09白银市)如图13,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90° 第 6 页
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:勾股定理的逆定理备课素材.doc
    链接地址:https://www.zixin.com.cn/doc/11257686.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork