分享
分销 收藏 举报 申诉 / 8
播放页_导航下方通栏广告

类型导数高考文科数学真题汇编:学生版.doc

  • 上传人:知****运
  • 文档编号:10814902
  • 上传时间:2025-06-18
  • 格式:DOC
  • 页数:8
  • 大小:487.01KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    导数 高考 文科 数学 汇编 学生
    资源描述:
    专题 导数 1.(2014大纲理)曲线在点(1,1)处切线的斜率等于( ) A. B. C.2 D.1 2.(2014新标2理) 设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示,则该函数的图象是(  ) 4.(2012陕西文)设函数f(x)=+lnx 则 ( ) A.x=为f(x)的极大值点 B.x=为f(x)的极小值点 C.x=2为 f(x)的极大值点 D.x=2为 f(x)的极小值点 5.(2014新标2文) 函数在处导数存在,若:是的极值点,则 A.是的充分必要条件 B. 是的充分条件,但不是的必要条件 C. 是的必要条件,但不是的充分条件 D. 既不是的充分条件,也不是的必要条件 6.(2012广东理)曲线在点处的切线方程为___________________. 7.(2013广东理)若曲线在点处的切线平行于轴,则 8.(2013广东文)若曲线在点处的切线平行于轴,则 . 9.(2014广东文)曲线在点处的切线方程为 . 10.(2013江西文)若曲线y=+1(α∈R)在点(1,2)处的切线经过坐标原点,则α= 11.(2012新标文) 曲线在点(1,1)处的切线方程为________ 12.(2014江西理)若曲线上点处的切线平行于直线,则点的坐标是________. 13.(2014江西文)若曲线处的切线平行于直线的坐标是_______. 14.(2012辽宁文)函数y=x2㏑x的单调递减区间为( ) (A)(1,1] (B)(0,1] (C.)[1,+∞) (D)(0,+∞) 15.(2014新标2文) 若函数在区间单调递增,则的取值范围是( ) (A) (B) (C) (D) 16. (2013新标1文) 函数在的图象大致为( ) 17.(2015年新课标2文)已知曲线在点 处的切线与曲线 相切,则a= . 18.(2015年陕西文)函数在其极值点处的切线方程为____________. 19.(2015年天津文)已知函数 ,其中a为实数,为的导函数,若 ,则a的值为 . 20、(2017·全国Ⅰ文,14)曲线y=x2+在点(1,2)处的切线方程为________. 21、(2017·浙江,7)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(  ) 22、(2016年天津高考)已知函数为的导函数,则的值为__________. 23、(2016年全国III卷高考)已知为偶函数,当 时,,则曲线在点处的切线方程式_____________________________. 24.(2012福建理)已知函数f(x)=ex+ax2-ex,a∈R. (1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间; 25.(2013新标1文) 已知函数,曲线在点处切线方程为。(Ⅰ)求的值;(Ⅱ)讨论的单调性,并求的极大值。 26.(2014新标1文) 设函数,曲线处的切线斜率为0。求b;⑵若存在使得,求a的取值范围。 27.(2013新标2理) 已知函数f(x)=ex-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 28.(2013北京文)已知函数 (1)若曲线在点处与直线相切,求与的值。 (2)若曲线与直线有两个不同的交点,求的取值范围。 29.(2012山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.(Ⅰ)求k的值; (Ⅱ)求的单调区间; 30.(2017·天津文,10)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为________. 31.(2015年新课标2文)已知. (I)讨论的单调性;(II)当有最大值,且最大值大于时,求a的取值范围. 32.(2017·全国Ⅰ文,21)已知函数f(x)=ex(ex-a)-a2x. (1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围. 33、(2016年北京高考)设函数 (I)求曲线在点处的切线方程; (II)设,若函数有三个不同零点,求c的取值范围; 34、(2016年全国II卷高考) 已知函数. (I)当时,求曲线在处的切线方程; (Ⅱ)若当时,,求的取值范围. 35.(2017·北京文,20)已知函数f(x)=excos x-x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间上的最大值和最小值. 36.(2017·山东文,20)已知函数f(x)=x3-ax2,a∈R. (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 36、(2016新课标1)已知函数f(x)=(x -2)ex+a(x -1)2. (Ⅰ)讨论f(x)的单调性; (Ⅱ)若有两个零点,求a的取值范围. 第 8 页(共 8 页)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:导数高考文科数学真题汇编:学生版.doc
    链接地址:https://www.zixin.com.cn/doc/10814902.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork