分享
分销 收藏 举报 申诉 / 7
播放页_导航下方通栏广告

类型阿氏圆问题归纳.doc

  • 上传人:丰****
  • 文档编号:10798592
  • 上传时间:2025-06-16
  • 格式:DOC
  • 页数:7
  • 大小:209.34KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    阿氏圆 问题 归纳
    资源描述:
    阿氏圆题型的解题方法和技巧 以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要. 具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P到两定点A、B的距离之比等于定比(≠1),则P点的轨迹,是以定比内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆. 定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB,(k≠1)P点的运动轨迹是圆或者圆弧的题型. PA+kPB,(k≠1)P点的运动轨迹是圆或圆弧的题型 阿氏圆基本解法:构造母子三角形相似 【问题】在平面直角坐标系xOy中,在x轴、y轴分别有点C(m,0),D(0,n).点P是平面内一动点,且OP=r,求PC+kPD的最小值. 阿氏圆一般解题步骤: 第一步:确定动点的运动轨迹(圆),以点O为圆心、r为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP、OD; 第三步:计算出所连接的这两条线段OP、OD长度; 第四步:计算这两条线段长度的比k; 第五步:在OD上取点M,使得OM:OP=OP:OD=k; 第六步:连接CM,与圆O交点即为点P.此时CM即所求的最小值. 【补充:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算】 习题 【旋转隐圆】如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是___________. 1.Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为△ABC内一动点,满足CD=2,则AD+BD的最小值为_______. 2.如图,菱形ABCD的边长为2,锐角大小为60°,⊙A与BC相切于点E,在⊙A上任取一点P,则PB+PD的最小值为________. 3.如图,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,P为圆B上一动点,则PD+PC的最小值为_________. 4.如图,点A,B在⊙O上,OA=OB=12,OA⊥OB,点C是OA的中点,点D在OB上,OD=10.动点P在⊙O上,则PC+PD的最小值为_______. 5.如图,等边△ABC的边长为6,内切圆记为⊙O,P是圆上动点,求2PB+PC的最小值. 6.如图,边长为4的正方形,内切圆记为⊙O,P是圆上的动点,求PA+PB的最小值. 7.如图,边长为4的正方形,点P是正方形内部任意一点,且BP=2,则PD+PC的最小值为______;PD+4PC的最小值为______. 8.在平面直角坐标系xOy中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是_______. 9.在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A的半径为6,P是⊙A上的动点,连接PB、PC,则3PC+2PB的最小值为_______. 10.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C. (1)试判断⊙C与AB的位置关系,并说明理由; (2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF; (3)点E是AB上任意一点,在(2)的情况下,试求出EF+FA的最小值. 11.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+PC的最小值和PD-PC的最大值; (2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+PC的最小值为______,PD-PC的最大值为______. (3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+PC的最小值为______,PD-PC的最大值为________. 12.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴, ∴PD=BP,∴AP+BP=AP+PD. 请你完成余下的思考,并直接写出答案:AP+BP的最小值为________. (2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为_______. (3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,求2PA+PB的最小值. 【二次函数结合阿氏圆题型】 13.如图1,抛物线y=ax²+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M. (1)求a的值和直线AB的函数表达式; (2)设△PMN的周长为C1,△AEN的周长为C2,若,求m的值; (3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值. 问题背景:如图1,在△ABC中,BC=4,AB=2AC. 问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______. 问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长. 问题解决:求△ABC的面积的最大值. 1.小明的数学探究小组进行了系列探究活动. 类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形. 探索理解: (1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形; 尝试体验: (2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积. 解决应用: (3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4. 小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由. 2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件. (2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=AB,试探究BC,BD的数量关系. (3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD面积的最小值. 7
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:阿氏圆问题归纳.doc
    链接地址:https://www.zixin.com.cn/doc/10798592.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork