分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型弦切角定理+圆幂定理之割线相交弦切割线定理.doc

  • 上传人:精***
  • 文档编号:10685951
  • 上传时间:2025-06-09
  • 格式:DOC
  • 页数:9
  • 大小:742.82KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    弦切角 定理 割线 相交 切割
    资源描述:
    弦切角定理及其应用 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 弦切角定义 图1 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。 弦切角定理 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 如上图,∠PCA=1/2∠COA=∠CBA 弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半) ∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角) 证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1) 圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角 (2)  圆心O在∠BAC的内部. ( B点应在A点左侧) 过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴ ∠CEA=∠CAB ∴ (弦切角定理) (3) 圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么 ∠CDA+∠CAD=∠CAB+∠CAD=90° ∴∠CDA=∠CAB ∴(弦切角定理) 3弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。 解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。∴∠CAB=∠CBA。(等腰三角形“等边对等角”)。 例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC. 证明:连接DF AD是∠BAC的平分线 ∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDC EF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD. 证明:∵AB是⊙O直径 ∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B, ∵MN切⊙O于C ∴∠MCA=∠B, ∴∠MCA=∠ACD, 即AC平分∠MCD, 同理:BC平分∠NCD。 割线定理 割线定理是现代词,是一个专有名词,指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等,英文“Secant Theorem”。 1定义 文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有 LA·LB=LC·LD=LT^2。 几何语言:∵割线LDC和LBA交于圆O于ABCD点 ∴LA·LB=LC·LD=LT^2 如右图所示。(LT为切线) 2证明一 已知:如图直线ABP和CDP是自点P引的⊙O的两条割线 求证:PA·PB=PC·PD 证明:连接AD、BC∵∠A和∠C都对弧BD ∴由圆周角定理,得 ∠A=∠C 又∵∠P=∠P ∴△ADP∽△CBP (A,A) ∴AP:CP=DP:BP 即AP·BP=CP·DP 3证明二 既然圆内接四边形定理可以从割线定理而得,那么或许割线定理就可以从圆内接四边形定理而得。 如图所示。 已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D 求证:AP·BP=CP·DP 证明:连接AC、BD 由圆内接四边形定理得 ∠ABD+∠DCA=∠CAB+∠BDC=180° 又∵∠ACP+∠DCA=∠DCP=180°,∠CAP+∠CAB=∠BAP=180°(平角的定义) ∴∠ABD=∠ACP,∠BDC=∠CAP(同角的补角相等) ∴△ACP∽△DBP(两角对应相等的三角形相似) ∴AP/DP=CP/BP(相似三角形对应边成比例) ∴AP·BP=CP·DP(比例基本性质)[1] 4证明三 根据切割线定理求证。 已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D 求证:AP·BP=CP·DP 过点P作圆O的切线,记切点为T 由切割线定理可知:AP·BP=PT^2,CP·DP=PT^2 所以AP·BP=CP·DP 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。 1概念 定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言: 若弦AB、CD交于点P 则PA·PB=PC·PD(相交弦定理) 概述:相交弦定理为圆幂定理之一,其他两条定理为:切割线定理、 割线定理 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.) ∴△PAC∽△PDB ∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。 3比较 相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求线段长度。 4相交弦定理推论 定理:如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 几何语言: 若AB是直径,CD垂直AB于点P, 则PC2=PA·PB(相交弦定理推论) 切割线定理 1定理:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。 几何语言: ∵PT切⊙O于点T,PBA是⊙O的割线 ∴PT²=PA·PB(切割线定理) 推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 几何语言:∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=PA·PB(切割线定理推论)(割线定理) 由上可知:PT2=PA·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB 证明:连接AT, BT ∵∠PTB=∠PAT(弦切角定理) ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT 2 =PB·PA
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:弦切角定理+圆幂定理之割线相交弦切割线定理.doc
    链接地址:https://www.zixin.com.cn/doc/10685951.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork